首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
氮肥水平对稻田细菌群落及N2O排放的影响   总被引:3,自引:0,他引:3  
作为土壤氮素转化的驱动者,微生物群落结构关系着稻田氮素利用及温室气体N_2O排放等问题。本研究分别基于高通量测序和荧光定量PCR技术,分析了不同氮肥水平[CK(不施氮)、N(施N 180 kg·hm-2)、2/3N(施N 120 kg·hm-2)、1/3N(施N 60 kg·hm-2)]下稻田细菌群落及硝化反硝化关键微生物功能基因丰度的变化。结果显示:氮肥水平提高增加了稻田细菌物种丰富度Chao1指数和群落多样性Shannon指数,改变了细菌群落组成,其中与硝化作用相关的硝化螺菌门Nitrospirae和嗜酸的醋杆菌门Acidobacteria的相对丰度随氮肥水平提高而增加,但甲烷氧化菌Methylosinus的相对丰度随氮肥水平提高而降低。氮肥水平对稻田硝化作用关键微生物氨氧化细菌amo A基因丰度的影响较大,0~5 cm和10~20 cm深度土层中的amo A基因丰度均随氮肥用量增加而提高;反硝化作用关键微生物功能基因nir S、qno B和nos Z的丰度在不施肥处理(CK)中显著低于施肥处理(1/3N、2/3N和N)(P0.05),但1/3N、2/3N和N处理的稻田nir S基因丰度没有明显差异;0~5 cm土层中qno B和nos Z基因丰度存在随氮肥水平提高而增加的趋势,10~20 cm土层中nos Z基因丰度在2/3N和N处理下显著高于1/3N处理(P0.05)。N处理的稻田N_2O排放通量显著高于2/3N及1/3N处理(P0.05),后者又显著高于CK处理(P0.05)。相关分析结果表明稻田N_2O排放通量与0~5 cm土层中硝化螺菌门Nitrospirae相对丰度及10~20 cm土层中amo A基因丰度存在显著相关性(P0.05,n=10)。综上所述,氮肥水平提高增加了稻田细菌群落多样性,促进了稻田N_2O排放,且本研究稻田中硝化作用微生物群落及丰度变化与稻田N_2O排放的关系更为密切。  相似文献   

2.
3.
Soil N fertilization stimulates the activity of the soil bacterial species specialized in performing the different steps of the denitrification processes. Different responses of these bacterial denitrifiers to soil N management could alter the efficiency of reduction of the greenhouse gas N2O into N2 gas in cultivated fields. We used next generation sequencing to show how raising the soil N fertility of Canadian canola fields differentially modifies the diversity and composition of nitrite reductase (nirK and nirS) and nitrous oxide reductase (nosZ) gene-carrying denitrifying bacterial communities, based on a randomized complete blocks field experiment. Raising soil N levels increased up to 60% the ratio of the nirK to nirS genes, the two nitrite reductase coding genes, in the Brown soil and up to 300% in the Black soil, but this ratio was unaffected in the Dark Brown soil. Raising soil N levels also increased the diversity of the bacteria carrying the nitrite reductase gene nirK (Simpson index, P = 0.0417 and Shannon index, 0.0181), and changed the proportions of the six dominant phyla hosting nirK, nirS, and nosZ gene-carrying bacteria. The level of soil copper (Cu) and the abundance of nirK gene, which codes for a Cu-dependent nitrite reductase, were positively related in the Brown (P = 0.0060, R2 = 0.48) and Dark Brown (0.0199, R2 = 0.59) soils, but not in the Black soil. The level of total diversity of the denitrifying communities tended to remain constant as N fertilization induced shifts in the composition of these denitrifying communities. Together, our results indicate that higher N fertilizer rate increases the potential risk of nitrous oxide (N2O) emission from canola fields by promoting the proliferation of the mostly adaptive N2O-producing over the less adaptive N2O-reducing bacterial community.  相似文献   

4.
Tools to manage the emission of the greenhouse gas nitrous oxide (N2O), an intermediate of both nitrification and denitrification, from soils are limited. To date, the nitrification inhibitor dicyandiamide (DCD) is one of the most effective tools available to livestock farmers for reducing N2O emissions and minimizing leaching of nitrogen in response to increased urine deposition in grazed pasture systems. Despite its effectiveness in decreasing N losses from animal urine by inhibiting N processes in soils, the effect of DCD on the population structure of denitrifiers and overall bacterial community composition is still uncertain. Here we use three New Zealand dairy-grazed pasture soils to determine the effects of DCD application on microbial community richness and composition at both functional (genes involved in the denitrification process) and phylogenetic (overall bacterial community composition based on 16S rRNA profiling) levels. Results further confirm that the effects on microbial populations are minimal and transient in nature. The impact of DCD on microbial community structure was soil dependent, and a greater effect was attributed to intrinsic soil properties like soil texture, with community response to DCD in combination with urine being comparable to that under urine alone. Addition of DCD to cattle urine also reduced N2O emission between 23 and 67%.  相似文献   

5.
Soils are the major source of the greenhouse gas nitrous oxide (N2O) to our atmosphere. A thorough understanding of terrestrial N2O production is therefore essential. N2O can be produced by nitrifiers, denitrifiers, and by nitrifiers paradoxically denitrifying. The latter pathway, though well-known in pure culture, has only recently been demonstrated in soils. Moreover, nitrifier denitrification appeared to be much less important than classical nitrate-driven denitrification. Here we studied a poor sandy soil, and show that when moisture conditions are sub-optimal for denitrification, nitrifier denitrification can be a major contributor to N2O emission from this soil. We conclude that the relative importance of classical and nitrifier denitrification in N2O emitted from soil is a function of the soil moisture content, and likely of other environmental conditions as well. Accordingly, we suggest that nitrifier denitrification should be routinely considered as a major source of N2O from soil.  相似文献   

6.
The contribution of nitrifiers (ammonia-oxidizing bacteria (AOB)) and denitrifiers to nitrous oxide (N2O) emission from arctic soils remains inconclusive. Based on preliminary experiments, we hypothesized that AOB are the primary producers of N2O in a high arctic lowland ecosystem on Devon Island, Nunavut, Canada. In part 1 of the study, flux chambers were installed in a catena to determine in situ fluxes of gases (N2O and carbon dioxide (CO2)) from 16 June to 13 July 2004. Although fluxes were low, N2O production occurred in the wettest area of the landscape when ammonium levels were high. As ammonium, but not nitrate, levels declined in the wet sedge meadow, N2O emissions correspondingly decreased. In part 2, the contribution of nitrification and denitrification to N2O production was assessed by Acetylene Inhibition Assay and 15N isotopically enriched incubations. Ammonium fertilization stimulated N2O emissions to a greater extent than nitrate, and acetylene had a greater impact on N2O emissions in ammonium-fertilized soils than in nitrate-amended soils. Stable isotope analysis indicated that at 50-55% water filled pore space, nitrification was the dominant (>80%) N2O emitting process. In part 3, molecular analyses of the two N2O producing groups indicated the both nitrifiers and denitrifiers did not differ between landforms. Our results suggest nitrifier denitrification is the dominant process occurring in these arctic soils and that the role of denitrifiers in N2O release from arctic soils needs to be re-evaluated.  相似文献   

7.
Li  Jie  Shi  Yuanliang  Luo  Jiafa  Li  Yan  Wang  Lingli  Lindsey  Stuart 《Journal of Soils and Sediments》2019,19(3):1250-1259
Purpose

Nitrification and denitrification in the N cycle are affected by various ammonia oxidizers and denitrifying microbes in intensive vegetable cultivation soils, but our current understanding of the effect these microbes have on N2O emissions is limited. The nitrification inhibitor, 3,4-dimethylpyrazole phosphate (DMPP), acts by slowing nitrification and is used to improve fertilizer use efficiency and reduce N losses from agricultural systems; however, its effects on nitrifier and denitrifier activities in intensive vegetable cultivation soils are unknown.

Materials and methods

In this study, we measured the impacts of DMPP on N2O emissions, ammonia oxidizers, and denitrifying microbes in two intensive vegetable cultivation soils: one that had been cultivated for a short term (1 year) and one that had been cultivated over a longer term (29 years). The quantitative PCR technique was used in this study. Three treatments, including control (no fertilizer), urea alone, and urea with DMPP, were included for each soil. The application rates of urea and DMPP were 1800 kg ha?1 and 0.5% of the urea-N application rate.

Results and discussion

The application of N significantly increased N2O emissions in both soils. The abundance of ammonia-oxidizing bacteria (AOB) increased significantly with high rate of N fertilizer application in both soils. Conversely, there was no change in the growth rate of ammonia-oxidizing archaea (AOA) in response to the applied urea despite the presence of larger numbers of AOA in these soils. This suggests AOB may play a greater role than AOA in the nitrification process, and N2O emission in intensive vegetable cultivation soils. The application of DMPP significantly reduced soil NO3?-N content and N2O emission, and delayed ammonia oxidation. It greatly reduced AOB abundance, but not AOA abundance. Moreover, the presence of DMPP was correlated with a significant decrease in the abundance of nitrite reductase (nirS and nirK) genes.

Conclusions

Long-term intensive vegetable cultivation with heavy N fertilization altered AOB and nirS abundance. In vegetable cultivation soils with high N levels, DMPP can be effective in mitigating N2O emissions by directly inhibiting both ammonia oxidizing and denitrifying microbes.

  相似文献   

8.
The production of nitrous oxide (N2O) is a widespread trait in fungi and is of interest because denitrifying fungi lack the N2O reductase gene (nosZ) that regulates N2O reduction to nitrogen gas (N2). The adaptive ability of soil fungi is better than that of bacteria in acidic soils. We investigated the N2O reduction potential, described by the N2O product ratio (RN2O), N2O/(N2O+N2), in soils of different types of fields under crop cultivation with different fertilizer inputs and a bare fallow field with no fertilization as a control. The fungi-to-bacteria abundance ratio (RF/B) was negatively correlated (P < 0.01) with the natural pH of the soil; however, the high value of RF/B measured in vineyards was due to the large inputs of manure. When the denitrification potential was measured at natural pH values of soils, RN2O was negatively correlated (P < 0.01) with soil pH. When the denitrification potential was measured after short-term modifications of soil pH, however, no significant correlation was found between RN2O and the modified pH. Based on stepwise multiple regression analysis, soil pH and residual nitrate (NO3-) were the key factors regulating N2O reduction in soils at natural pH values (R2=0.88, P < 0.001), whereas the key factor was the soil residual NO3- alone (R2=0.83, P < 0.001) when the soil pH was modified. When the effect of the soil chemical properties was weakened, a high RF/B value had the potential (P < 0.01) to affect N2O reduction; however, the role of fungi was offset by the presence of denitrifying bacteria. These results provide evidence that compared to the indirect effects of RF/B, the direct effects of the soil chemical properties have a greater effect on N2O reduction in fertilized soils.  相似文献   

9.
Drained organic forest soils represent a hotspot for nitrous oxide (N2O) emissions, which are directly related to soil fertility, with generally higher emissions from N-rich soils. Highest N2O emissions have been observed in organic forest soils with low pH. The mechanisms for these high emissions are not fully understood. Therefore, the present study was conducted to gain a deeper insight into the underlying mechanisms that drive high N2O emissions from acid soils. Specifically, we investigated the microbial community structure, by phospholipid fatty acid analysis, along a natural pH gradient in an organic forest soil combined with measurements of physico-chemical soil properties. These were then statistically related to site-specific estimates of annual N2O emissions along the same natural pH gradient. Our results indicate that acidic locations with high N2O emissions had a microbial community with an increased fungal dominance. This finding points to the importance of fungi for N2O emissions from acid soils. This may either be directly via fungal N2O production or indirectly via the effect of fungi on the N2O production by other microorganisms (nitrifiers and denitrifiers). The latter may be due to fungal mediated N mineralization, providing substrate for N2O production, or by creating favourable conditions for the bacterial denitrifier community. Therefore, we conclude that enhanced N2O emission from acid forest soil is related, in addition to the known inhibitory effect of low pH on bacterial N2O reduction, to a soil microbial community with increased fungal dominance. Further studies are needed to reveal the exact mechanisms.  相似文献   

10.
Diversity of denitrifying microflora and ability to reduce N2O in two soils   总被引:1,自引:0,他引:1  
 The ozone-depleting gas N2O is an intermediate in denitrification, the biological reduction of NO3 to the gaseous products N2O and N2 gas. The molar ratio of N2O produced (N2O/N2O+N2) varies temporally and spatially, and in some soils N2O may be the dominant end product of denitrification. The fraction of NO3 -N emitted as N2O may be due at least in part to the abundance and activity of denitrifying bacteria which possess N2O reductase. In this study, we enumerated NO3 -reducing and denitrifying bacteria, and compared and contrasted collections of denitrifying bacteria isolated from two agricultural soils, one (Auxonne, soil A) with N2O as the dominant product of denitrification, the other (Chalons, soil C) with N2 gas as the dominant product. Isolates were tested for the ability to reduce N2O, and the presence of the N2O reductase (nosZ)-like gene was evaluated by polymerase chain reaction (PCR) using specific primers coupled with DNA hybridization using a specific probe. The diversity and phylogenetic relationships of members of the collections were established by PCR/restriction fragment length polymorphism of 16s rDNA. The two soils had similar numbers of bacteria which used NO3 as a terminal electron acceptor anaerobically. However, the soil A had many more denitrifiers which reduced NO3 to gaseous products (N2O or N2) than did soil C. Collections of 258 and 281 bacteria able to grow anaerobically in the presence of NO3 were isolated from soil A and soil C, respectively. These two collections contained 66 and 12 denitrifying isolates, respectively, the others reducing NO3 only as far as NO2 . The presence of nosZ sequences was generally a poor predictor of N2O reducing ability: there was agreement between the occurrence of nosZ sequences and the N2O reducing ability for only 42% of the isolates; 35% of the isolates (found exclusively in soil A) without detectable nosZ sequences reduced N2O whereas 21% of the isolates carrying nosZ sequences did not reduce this gas under our assay conditions. Twenty-eight different 16S rDNA restriction patterns (using two restriction endonucleases) were distinguished among the 78 denitrifying isolates. Two types of patterns appeared to be common to both soils. Twenty-three and three types of patterns were found exclusively among bacteria isolated from soils A and C, respectively. The specific composition of denitrifying communities appeared to be different between the two soils studied. This may partly explain the differences in the behaviour of the soils concerning N2O reduction during denitrification. Received: 31 October 1997  相似文献   

11.
有机无机肥料配合施用对设施菜田土壤N2O排放的影响   总被引:11,自引:3,他引:8  
采用静态箱气相色谱法研究了有机无机肥料配合施用对设施菜田土壤N2O排放的影响。结果表明: 1)设施芹菜和番茄施基肥后57 d(灌溉后13 d)出现土壤N2O排放通量峰值,追肥后(施肥与灌溉同步)1 d出现土壤N2O排放通量峰值; 芹菜季和番茄季施用基肥后20 d内N2O排放量分别占当季总排放量的40%65%左右,是土壤N2O主要排放期。2)施用基肥后至定植灌水前各处理土壤N2O排放量逐渐降低,灌水后N2O排放通量迅速上升。各处理土壤N2O排放通量与土壤含水量之间呈显著相关,相关系数在0.43~0.72之间。3)土壤N2O排放主要发生在番茄季,番茄生育期各处理土壤N2O总排放量是芹菜生育期的3.1倍; 各处理土壤N2O排放通量与5 cm土层温度之间总体上呈显著相关,相关系数在0.40~0.58之间。4)设施菜田大幅减施化肥的有机无机肥配合施用模式可显著降低土壤N2O排放量和肥料损失率,芹菜季和番茄季土壤N2O排放量较习惯施肥处理分别降低66.3%和85.1%,肥料损失率分别降低45.2%和74.9%。5)等氮量投入时,施用秸秆较施用猪粪可有效降低土壤N2O排放,芹菜季和番茄季分别降低43.4%和74.2%。  相似文献   

12.
The potential denitrification (PD) rate, NO, N2O, and N2 emission were determined after treatment with 50 mg NO3 ??N kg?1 soil using the acetylene inhibition method, and meanwhile abundance of four denitrifying genes (i.e., narG, nirK, norB, nosZ) was also investigated in subtropical soils of China. Soil samples were collected from conifer forest (C), shrub forest, and farmland. These soils were derived from Quaternary red earth and granite. The PD rate and N gas emissions significantly (p?<?0.05) differed between forest and farmland soils; abundance of denitrifying genes was also significantly affected by the land-use change. Correlation and multiple stepwise regression analyses showed that the PD rate was significantly (p?<?0.05) and positively correlated with soil pH but not with soil organic C and total N contents (p?>?0.05). The norB gene copies in farmland soils were significantly higher than in conifer and shrub forest soils (p?<?0.01). Both norB and nosZ gene copies were linearly correlated with soil pH, and the PD rate and N2 emission rate were significantly correlated with the abundance of norB (p?<?0.05). Probably, soil pH affected denitrifiers targeted by the norB gene, thus decreasing the reduction of NO and N2O.  相似文献   

13.
施肥方式对冬小麦—夏玉米轮作土壤N_2O排放的影响   总被引:4,自引:0,他引:4  
刘韵  柳文丽  朱波 《土壤学报》2016,53(3):735-745
氧化亚氮(N_2O)是一种重要的农田温室气体,本研究利用紫色土长期施肥试验平台,采用静态箱/气相色谱法对紫色土旱作农田冬小麦—夏玉米轮作系统的N_2O排放进行了定位观测(2012年11月至2013年9月),研究单施氮肥(N)、常规氮磷钾肥(NPK)、猪厩肥(OM)、猪厩肥配施氮磷钾肥(OMNPK)和秸秆还田配施氮磷钾肥(ICRNPK)等施肥方式对紫色土N_2O排放特征的影响;不施肥(NF)作为对照计算排放系数,以探寻紫色土地区可操作性强、环境友好的施肥方式。结果表明,所有施肥方式的N_2O排放均呈现双峰排放,峰值出现在施肥初期;玉米季N_2O排放峰值显著高于小麦季(p0.05)。在相同的施氮水平(小麦季130 kg hm~(~(-2)),玉米季150 kg hm~(~(-2)))下,施肥方式对N_2O排放和作物产量均有显著影响(p0.05)。N、OM、NPK、OMNPK和ICRNPK处理的土壤N_2O周年累积排放量分别为1.93、1.96、1.12、1.50和0.79 kg hm~(~(-2)),排放系数分别为0.62%、0.63%、0.33%、0.47%和0.21%,全年作物产量分别为4.35、11.95、8.39、9.77、10.93 t hm~(~(-2))。施用猪厩肥显著增加N_2O排放量,而秸秆还田在保证作物产量的同时显著降低N_2O排放量,可作为紫色土地区环境友好的施肥方式。土壤无机氮(NO_3~--N和NH_4~+-N)是N_2O排放的主要限制因子。因此,在施氮水平相同时,施肥方式对紫色土活性氮含量的影响导致N_2O排放差异显著,是土壤N_2O排放差异的根本原因。土壤孔隙充水率也是影响N_2O排放的重要环境因子,并且其对N_2O排放的影响存在阈值效应。  相似文献   

14.
《Soil biology & biochemistry》2001,33(4-5):683-687
Emissions of N2O from acid coniferous forest soils are found to be low and considered to be due to nitrification rather than denitrification. Recently we have demonstrated soil-layer specific denitrification in a Scots pine forest in the Netherlands. N2O production, in the presence of high concentrations of acetylene, was detected in the intact needle fraction but was absent in the fragmentation layer of this forest soil. To identify the factors regulating denitrification activity, in the present study the effects of oxygen, pH and organic carbon were investigated in the needle and fragmentation fraction of acid coniferous forest soils. Under natural circumstances denitrification in the Scots pine needles was higher than in Douglas fir needles and absent in fragmentation material. Under anaerobic conditions comparable N2O production in the two soil types was found in needle suspensions of both forest types, indicating that differences in anaerobic microsites were responsible for different N2O production under aerobic circumstances. Denitrifying capacity was absent in the fragmentation layer; under anaerobic circumstances little N2O was produced. Neither an addition of available carbon (glucose and succinate) nor an increase in pH revealed a denitrifying capacity comparable to that observed in needles. The increase in pH, under anaerobic circumstances, was most effective on N2O production in the fragmentation material. The denitrifying capacity in the fragmentation layer remained low during short-term incubation under optimal conditions. This indicates the presence of a low denitrifying population, most likely due to aerobic conditions, low pH and low available organic carbon. Although the significance of N2O production under natural conditions remains speculative, this study seeks to clarify soil-layer specific denitrifying activity in acid coniferous forest soils.  相似文献   

15.
太湖地区水稻土优势反硝化细菌的数量、组成与酶活性   总被引:4,自引:1,他引:4  
本研究结果表明太湖地区主要水稻土中反硝化细菌常在百万/克干土以上,占细菌总数的50—80%。同一类型土壤中,肥力高者含菌数多于肥力低者。各类土壤中反硝化细菌数与细菌总数呈显著正相关。其优势种中,以巨大芽孢杆菌、荧光假单胞菌和施氏假单胞菌等出现的机率最高,占反硝化细菌的10—50%;地衣芽孢杆菌及坚强芽孢杆菌等出现的机率较少。具有使NO3-还原为N2O的菌株和使N2O还原为N2的菌株,分别占供试菌株的67%和56%;使15NO3-异化还原为15NH4+的菌株占供试菌株的92%,其中以蜡质芽孢杆菌和地衣芽孢杆菌的这种能力特别强。  相似文献   

16.
农业土壤中的氧化亚氮排放: 为减排综述时空变化   总被引:3,自引:0,他引:3  
This short review deals with soils as an important source of the greenhouse gas N2O. The production and consumption of N2O in soils mainly involve biotic processes: the anaerobic process of denitrification and the aerobic process of nitrification. The factors that significantly influence agricultural N2O emissions mainly concern the agricultural practices (N application rate, crop type, fertilizer type) and soil conditions (soil moisture, soil organic C content, soil pH and texture). Large variability of N2O fluxes is known to occur both at different spatial and temporal scales. Currently new techniques could help to improve the capture of the spatial variability. Continuous measurement systems with automatic chambers could also help to capture temporal variability and consequently to improve quantification of N2O emissions by soils. Some attempts for mitigating soil N2O emissions, either by modifying agricultural practices or by managing soil microbial functioning taking into account the origin of the soil N2O emission variability, are reviewed.  相似文献   

17.
Summary It is commonly assumed that a large fraction of fertilizer N applied to a rice (Oryza sativa L.) field is lost from the soil-water-plant system as a result of denitrification. Direct evidence to support this view, however, is limited. The few direct field, denitrification gas measurements that have been made indicate less N loss than that determined by 15N balance after the growing season. One explanation for this discrepancy is that the N2 produced during denitrification in a flooded soil remains trapped in the soil system and does not evolve to the atmosphere until the soil dries or is otherwise disturbed. It seems likely, however, that N2 produced in the soil uses the rice plants as a conduit to the atmosphere, as does methane. Methane evolution from a rice field has been demonstrated to occur almost exclusively through the rice plants themselves. A field study in Cuttack, India, and a greenhouse study in Fort Collins, Colorado, were conducted to determine the influence of rice plants on the transport of N2 and N2O from the soil to the atmosphere. In these studies, plots were fertilized with 75 or 99 atom % 15N-urea and 15N techniques were used to monitor the daily evolution of N2 and N2O. At weekly intervals the amount of N2+N2O trapped in the flooded soil and the total-N and fertilized-N content of the soil and plants were measured in the greenhouse plots. Direct measurement of N2+N2O emission from field and greenhouse plots indicated that the young rice plant facilitates the efflux of N2 and N2O from the soil to the atmosphere. Little N gas was trapped in the rice-planted soils while large quantities were trapped in the unplanted soils. N losses due to denitrification accounted for only up to 10% of the loss of added N in planted soils in the field or greenhouse. The major losses of fertilizer N from both the field and greenhouse soils appear to have been the result of NH3 volatilization.  相似文献   

18.
森林土壤氧化亚氮排放对大气氮沉降增加的响应研究进展   总被引:1,自引:1,他引:1  
森林土壤N2O来源于土壤氮素的氧化还原反应,硝化、反硝化、硝化细菌反硝化以及化学反硝化是其产生的四个关键过程。当前,氮素富集条件下森林土壤N2O排放存在硝化和反硝化主导作用之争,对大气氮沉降增加的响应模式以及微生物驱动机制尚不清楚。综述了森林土壤N2O来源的稳定性同位素拆分,森林土壤总氮转化和N2O排放对增氮的响应规律,增氮对N2O产生菌群落活性和组成的影响,并指出研究的薄弱环节与未来的研究重点。总体而言,森林土壤N2O排放对大气氮沉降增加的响应呈现非线性,包括初期无明显响应、中期缓慢增加和后期急剧增加三个阶段,取决于森林生态系统"氮饱和"程度。施氮会引起森林土壤有效氮由贫氮向富氮的转变,相应地改变了土壤硝化细菌和反硝化细菌群落丰度与组成,进而影响土壤N2O排放。由于森林土壤N2O排放监测、土壤总氮转化和N2O产生菌群落动态研究多为独立进行的,难以阐明微生物功能群与N2O排放之间的耦合关系。未来研究应该有机结合15N-18O标记和分子生物学技术,准确量化森林土壤N2O的来源,揭示森林土壤N2O排放对增氮的非线性响应机理。  相似文献   

19.
不同利用方式红壤反硝化势和气态产物排放特征   总被引:1,自引:1,他引:1  
采用厌氧培养-乙炔抑制法测定了4种不同利用方式红壤的反硝化势和气态产物N2O和N2的排放速率。结果表明,不同利用方式红壤反硝化势和N2O和N2的排放速率差异明显,土壤反硝化势强弱顺序依次为:竹林>茶园>林地>旱地。反硝化势与土壤有机碳(P<0.05)、厌氧培养期间土壤CO2累积排放量(P<0.01)、nirS基因丰度( P<0.05)和nirK基因丰度(P<0.05) 呈显著正相关关系。逐步回归分析结果表明,CO2累积排放量表征的易矿化碳是造成不同利用方式红壤反硝化势差异的主要原因,可以解释反硝化势变化的66%(P<0.01)。不同利用方式红壤N2O和N2排放速率差异明显,旱地红壤N2O和N2排放速率均最低,表明土壤pH的提升并没有增加旱地红壤的反硝化损失风险和N2O排放速率。土壤易矿化有机碳含量也是影响不同利用方式红壤N2O和N2排放速率的主要因素。反硝化功能基因nirS、nirK和nosZ的丰度均与CO2累积排放量呈显著正相关关系,进一步支持了土壤易矿化有机碳含量是影响不同利用方式红壤反硝化势和气态产物排放的主要因子。土壤pH是影响不同利用方式红壤反硝化气态产物N2/N2O的主要因素,但是pH影响红壤N2/N2O的微生物机制仍需要进一步研究。  相似文献   

20.
Wood ash has been used to alleviate nutrient deficiencies and acidification in boreal forest soils. However, ash and nitrogen (N) fertilization may affect microbial processes producing or consuming greenhouse gases: methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). Ash and N fertilization can stimulate nitrification and denitrification and, therefore, increase N2O emission and suppress CH4 uptake rate. Ash may also stimulate microbial respiration thereby enhancing CO2 emission. The fluxes of CH4, N2O and CO2 were measured in a boreal spruce forest soil treated with wood ash and/or N (ammonium nitrate) during three growing seasons. In addition to in situ measurements, CH4 oxidation potential, CO2 production, net nitrification and N2O production were studied in laboratory incubations. The mean in situ N2O emissions and in situ CO2 production from the untreated, N, ash and ash + N treatments were not significantly different, ranging from 11 to 17 μg N2O m?2 h?1 and from 533 to 611 mg CO2 m?2 h?1. However, ash increased the CH4 oxidation in a forest soil profile which could be seen both in the laboratory experiments and in the CH4 uptake rates in situ. The mean in situ CH4 uptake rate in the untreated, N, ash and ash + N plots were 153 ± 5, 123 ± 8, 188 ± 10 and 178 ± 18 μg m?2 h?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号