首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Winter forage grazing systems in New Zealand cause compaction of soil by grazing animals, especially when the soil is wet. However, there is little information on the effects of animal trampling on denitrifiers in soil, despite their importance for N2O production. Here, we report a field study of the abundance of the denitrifying genes nirS, nirK, and nosZ and N2O emissions following the application of dairy cow urine in a free‐draining stony soil. Importantly, we found that simulated animal trampling altered some of the denitrifying microbial communities, thus leading to increased N2O emissions. Over the 111 day measurement period, the abundance of nitrite (NO2?)‐reducing nirS gene copy numbers increased significantly by 87% in the trampled soil with urine (P < 0.01) and increased by 40% in the trampled soil without urine (P < 0.05), but the nirS gene abundance did not change significantly in the nontrampled soil. The abundance of NO2? reducing nirK gene copy numbers was not affected by trampling, but increased significantly following urine application. The abundance of N2O‐reducing nosZ clade I and nosZ clade II gene copy numbers increased significantly in the trampled soil, but did not change significantly in the nontrampled soil. N2O emissions from the trampled soil were about twice that from the nontrampled soil without urine (1.20 and 0.62 kg N2O‐N per ha, respectively) and about eight times greater (6.24 kg N2O‐N per ha) than from nontrampled soil (0.80 kg N2O‐N per ha) when urine was applied. These results strongly suggest that animal trampling during winter forage grazing can have a major impact on denitrifying communities in soil, which in turn stimulate greater denitrification with increased N2O emissions.  相似文献   

2.
The antibiotic sulfadiazine (SDZ) can affect denitrifying bacteria in soil. However, effects on denitrifiers in the gut of earthworms have not been described so far. Therefore, the influence of SDZ-contaminated manure applied to soil on denitrifiers in the gut of the earthworm Eisenia fetida was assessed by quantitative polymerase chain reaction targeting genes coding for nirK- and nirS-type nitrite reductases of denitrifiers. Gut contents of Eisenia fetida contained 2.5 × 106 and 5.1 × 105 gene copies of nirK and nirS, respectively, after 2 weeks in soils amended with manure only. Copy numbers of nirK and nirS in gut contents from manure treatments with SDZ were up to ten times less. Overall, the data indicate a negative impact of SDZ on denitrifiers in the gut of earthworms.  相似文献   

3.
Soil N fertilization stimulates the activity of the soil bacterial species specialized in performing the different steps of the denitrification processes. Different responses of these bacterial denitrifiers to soil N management could alter the efficiency of reduction of the greenhouse gas N2O into N2 gas in cultivated fields. We used next generation sequencing to show how raising the soil N fertility of Canadian canola fields differentially modifies the diversity and composition of nitrite reductase (nirK and nirS) and nitrous oxide reductase (nosZ) gene-carrying denitrifying bacterial communities, based on a randomized complete blocks field experiment. Raising soil N levels increased up to 60% the ratio of the nirK to nirS genes, the two nitrite reductase coding genes, in the Brown soil and up to 300% in the Black soil, but this ratio was unaffected in the Dark Brown soil. Raising soil N levels also increased the diversity of the bacteria carrying the nitrite reductase gene nirK (Simpson index, P = 0.0417 and Shannon index, 0.0181), and changed the proportions of the six dominant phyla hosting nirK, nirS, and nosZ gene-carrying bacteria. The level of soil copper (Cu) and the abundance of nirK gene, which codes for a Cu-dependent nitrite reductase, were positively related in the Brown (P = 0.0060, R2 = 0.48) and Dark Brown (0.0199, R2 = 0.59) soils, but not in the Black soil. The level of total diversity of the denitrifying communities tended to remain constant as N fertilization induced shifts in the composition of these denitrifying communities. Together, our results indicate that higher N fertilizer rate increases the potential risk of nitrous oxide (N2O) emission from canola fields by promoting the proliferation of the mostly adaptive N2O-producing over the less adaptive N2O-reducing bacterial community.  相似文献   

4.
为揭示不同生物硝化抑制剂(BNIs)对红壤性水稻土N2O排放的影响差异及作用机制,通过21 d的土柱淹水培养试验,比较了三种BNIs 1,9-癸二醇(1,9-D)、亚麻酸(LN)和3-(4-羟基苯基)丙酸甲酯(MHPP)与化学合成硝化抑制剂双氰胺(DCD)对土壤N2O排放及相关硝化、反硝化功能基因的影响。结果表明:不同BNIs(1,9-D、LN、MHPP)可以显著平均降低土壤N2O日排放峰值40.1%;1,9-D和MHPP可分别抑制N2O排放总量44.5%和43.9%,而DCD和LN对N2O排放总量没有显著影响。1,9-D和MHPP对AOA(氨氧化古菌)、AOB(氨氧化细菌)硝化菌和nirS、nirK型反硝化菌的调控均有所不同,1,9-D可以同时抑制AOA、AOB和nirS微生物的生长;MHPP仅可以抑制AOA的生长;其中,AOA-amoA和nirS基因丰度与土壤N2O的排放呈显著正相关关系。同时,1,9-D和MHPP均增加了nosZ基因丰度及其与AOA-...  相似文献   

5.
6.
This study assessed the effects that season and tillage practices have on the diversity of nitrous oxide producing bacteria (nitrifiers and denitrifiers) and to relate this to measured N2O fluxes at our field site. Large-scale field plots (1.5 ha) were established in Elora, Ontario in 2000, and managed using conventional tillage (CT) or no-tillage (NT). Each field plot was instrumented with micrometeorological equipment to determine N2O fluxes on a field scale. Soil samples were taken at four time points between the fall of 2005 and the spring of 2006. The diversity of the nitrifier and denitrifier communities was assessed by PCR–denaturing gradient gel electrophoresis (DGGE) using primer pairs targeting the amoA, nirS and nirK gene. Seasonal variation (a combination of soil temperature, available soil moisture, nutrient levels and other potential factors) had the largest influence on the diversity of nitrifier and denitrifier populations; while tillage practice also influenced the diversity of the microbial community at certain time periods. Tillage significantly affected all communities in March and affected denitrifiers on all other dates except for the nirS community in February. Further statistical analysis revealed that diversity of the nitrifying and denitrifying populations was the lowest in February, in frozen soils, and rapidly increased in March, corresponding with spring thaw N2O emissions. Long-term soil nutrient, temperature and N2O data taken at this site added additional information on the dynamics of the nitrogen cycle.  相似文献   

7.
This study evaluated the effect of silicate fertilizer on denitrification and associated gene abundance in a paddy soil. A consecutive trial from 2013 to 2015 was conducted including the following treatments: control (CK), mineral fertilizer (NPK), NPK plus sodium metasilicate (NPK + MSF), and NPK plus slag-based silicate fertilizer (NPK + SSF). Real-time quantitative PCR (qPCR) was used to analyze the abundances of nirS, nirK, and nosZ genes. Potential N2O emissions and ammonium and nitrate concentrations were related to the nirS and nirK gene abundance. Compared with the NPK treatments, the addition of a Si fertilizer decreased N2O emission rates and denitrification potential by 32.4–66.6 and 22.0–59.2%, respectively, which were probably related to increased rice productivity, soil Fe availability, and soil N depletion. The abundances of nirS and nirK genes were decreased by 17.7–35.8% and 21.1–43.5% with addition of silicate fertilizers, respectively. Rates of total N2O and N2O from denitrification (DeN2O) emission were positively correlated with the nirS and nirK gene abundance. Nitrate, exchangeable NH4 +, and Fe concentrations were the main factors regulating the nirS and nirK gene abundance. Silicate fertilization during rice growth may serve as an effective approach to decreasing N2O emissions.  相似文献   

8.
Denitrification is an important part of the nitrogen cycle in the environment, and diverse bacteria, archaea, and fungi are known to have denitrifying ability. Rice paddy field soils have been known to have strong denitrifying activity, but the microbes responsible for denitrification in rice paddy field soils are not well known. Present study analyzed the diversity and quantity of the nitrite reductase genes (nirS and nirK) in a rice paddy field soil, sampled four times in one rice-growing season. Clone library analyses suggested that the denitrifier community composition varied over sampling time. Although many clones were distantly related to the known NirS or NirK, some clones were related to the NirS from Burkholderiales and Rhodocyclales bacteria, and some were related to the NirK from Rhizobiales bacteria. These denitrifiers may play an important role in denitrification in the rice paddy field soil. The quantitative PCR results showed that nirK was more abundant than nirS in all soil samples, but the nirK/nirS ratio decreased after water logging. These results suggest that both diversity and quantity changed over time in the rice paddy field soil, in response to the soil condition.  相似文献   

9.
The soil physicochemical properties, soil denitrification rates (PDR), denitrifiers via nitrite reductases (nirK and nirS) and nitrous oxide reductase (nosZ), abundance and community composition of denitrifiers in both the rhizosphere and bulk soil from a long-term (32 year) fertilizer field experiment conducted during late rice season were investigated by using the MiSeq sequencing, quantitative PCR, terminal restriction fragment polymorphism (T-RFLP). The experiment including four treatments: without fertilizer input (CK), chemical fertilizer alone (MF), rice straw residue and chemical fertilizer (RF), and organic manure and chemical fertilizer (OM). The results showed that the application of rice straw residue and organic manure increased soil organic carbon (C), total nitrogen (N), and NH4+-N contents. The nirK, nirS, and nosZ copy numbers with OM and RF treatments were significant higher than that of the MF and CK treatments in the rhizosphere and bulk soil (p < 0.05). The principal coordinate analysis (PCoA) analysis showed that the different parts of root zone are the most important factors for the variation of denitrifying bacteria community, and the different fertilization treatments is the second important factors for the variation of denitrifying bacteria community. The MiSeq sequencing result showed that nirK, nirS and nosZ-type denitrifiers communities within bulk soil had lower species diversity compared with rhizosphere soil, and were dominated by Rhizobiales, Rhodobacterales, Burkholderiales, and Pseudomonadales. As a result, the application of fertilization practices had significant effects on soil N and PDR levels, and affected the abundance and community composition of N-functional microbes.  相似文献   

10.
生物质炭在温室气体减排方面具有很大的发展前景,它不仅能实现固碳,对于在大气中停留时间长且增温潜势大的N2O也能发挥积极作用。本研究采用室内厌氧培养试验,按照生物质炭与土壤质量比(0、1%和5%)加入一定量生物质炭,土壤重量含水率控制在20%。利用Robotized Incubation平台实时检测N2O和N2浓度变化,通过测定土壤中反硝化功能基因丰度(nirKnirSnosZ)分析生物质炭对N2O消耗的影响及其微生物方面的影响机理。结果表明:经过20 h厌氧培养后,0生物质炭处理的反硝化功能基因丰度(基因拷贝数·g-1)分别为6.80×107nirK)、5.59×108nirS)和1.22×108nosZ)。与0生物质炭处理相比,1%生物质炭处理的nirS基因丰度由最初的2.65×108基因拷贝数·g-1升至7.43×108基因拷贝数·g-1,nosZ基因丰度则提高了一个数量级,由4.82×107基因拷贝数·g-1升至1.50×108基因拷贝数·g-1,然而nirK基因丰度并无明显变化;5%生物质炭处理的反硝化功能基因丰度并未发生显著变化。试验结束时,添加生物质炭处理的N2/(N2O+N2)比值也明显高于0生物质炭处理。相关性分析结果表明,nirS基因丰度和nosZ基因丰度均与N2O浓度在0.01水平上显著相关。试验末期nirS基因丰度和nosZ基因丰度均随着N2O浓度的降低而升高。因此在本试验中,添加1%生物质炭可显著提高nirSnosZ基因型反硝化细菌的丰度,增大N2/(N2O+N2)比值,促进N2O彻底还原成N2。生物质炭对于N2O主要影响机理是增大了可以还原氧化亚氮的细菌活性,促进完全反硝化。  相似文献   

11.
氮肥对稻田土壤反硝化细菌群落结构和丰度的影响   总被引:6,自引:1,他引:5  
以氮肥田间定位试验为研究对象,利用PCR-DGGE(聚合酶链反应变性梯度凝胶电泳)和荧光定量PCR(real-time PCR)技术,通过对反硝化细菌nirS基因的检测,分析了定位试验第2年稻田反硝化细菌群落结构和丰度的变化。DGGE图谱及依据其条带位置和亮度数字化数值进行的主成分分析(PCA)结果均显示:在氮肥定位试验第2年,与不施肥对照(CK)比较,在水稻各个生育期(分蘖期、齐穗期和成熟期)内,施用氮肥[150kg(N)·hm-2]的稻田根层土或表土中的反硝化细菌群落结构均无明显变化;且稻田根层土或表土中的反硝化细菌群落结构在水稻各个生育期间也均无明显差异。荧光定量PCR结果显示,在水稻生长发育过程中,施用氮肥的稻田根层土或表土中的反硝化细菌nirS基因拷贝数始终显著(P<0.05)高于其对应的不施肥对照。此外,无论施用氮肥与否,根层土中的反硝化细菌nirS基因拷贝数在水稻成熟期时都会显著(P<0.05)降低;但表土中的nirS基因拷贝数在水稻各生育期间无明显变化;且水稻成熟期时施用氮肥和不施肥的稻田表土中nirS基因拷贝数都显著(P<0.05)高于根层土。同时,与对照比较施用氮肥可促进水稻增产44%。研究表明,短期定位试验中施用氮肥能够显著提高稻田土壤反硝化细菌的丰度,但对其群落结构没有明显影响。  相似文献   

12.
13.
Soil moisture and nitrogen (N) are two important factors influencing N2O emissions and the growth of microorganisms. Here, we carried out a microcosm experiment to evaluate effects of soil moisture level and N fertilizer type on N2O emissions and abundances and composition of associated microbial communities in the two typical arable soils. The abundances and community composition of functional microbes involved in nitrification and denitrification were determined via quantitative PCR (qPCR) and terminal restriction length fragment polymorphism (T-RFLP), respectively. Results showed that N2O production was higher at 90% water-filled pore (WFPS) than at 50% WFPS. The N2O emissions in the two soils amended with ammonium were higher than those amended with nitrate, especially at relatively high moisture level. In both soils, increased soil moisture stimulated the growth of ammonia-oxidizing bacteria (AOB) and nitrite reducer (nirK). Ammonium fertilizer treatment increased the population size of AOB and nirK genes in the alluvial soil, while reduced the abundances of ammonia-oxidizing archaea (AOA) and denitrifiers (nirK and nosZ) in the red soil. Nitrate addition had a negative effect on AOA abundance in the red soil. Total N2O emissions were positively correlated to AOB abundance, but not to other functional genes in the two soils. Changed soil moisture significantly affected AOA rather than AOB community composition in both soils. The way and extent of N fertilizers impacted on nitrifier and denitrifier community composition varied with N form and soil type. These results indicate that N2O emissions and the succession of nitrifying and denitrifying communities are selectively affected by soil moisture and N fertilizer form in the two contrasting types of soil.  相似文献   

14.
Pasture soils used for cattle overwintering may represent significant sources of N2O emissions from soils. Therefore, the long-term effect of cattle overwintering on the abundance and activity of a denitrifying community was explored. The study was performed at a cattle overwintering area in South Bohemia (Czech Republic), where three sites differing in the degree of animal impact were selected: severely impacted (SI) and moderately impacted (MI), as well as a control site with no impact (NI). N2O flux measurement and soil sampling were performed in spring and fall of 2005. The activity was measured in terms of potential denitrification activity. Bacterial nirK, nirS and nosZ genes were used as functional markers of the denitrifying communities; abundance was analyzed using a real-time PCR assay. Surprisingly, in situ N2O emissions were the highest in spring at MI and significantly differed from those at SI and NI, while in autumn, rates of emissions generally decreased. In contrast potential denitrification rates were highest at SI, followed by MI, and the lowest at NI. An overall significant shift in N2O/N2 molar ratio was shown in cattle impacted sites. The highest abundance of all genes measured at both sampling times was found at site SI, whereas at site MI increased numbers were observed only in spring. Our results indicate a strong influence of cattle on the abundance as well as the activity of microbes involved in denitrification.  相似文献   

15.
Defining response groups within N-related microbial communities is needed to predict land management effect on soil N dynamics, but information on such response groups and associated environmental drivers is scarce. We investigated the abundance and major populations of ammonia-oxidizing archaea (AOA) and bacteria (AOB), and nirS- and nirK-harboring denitrifiers under different grazing managements in Tibetan alpine meadow soils. Grazing increased AOB and AOA abundances up to 42 fold and 3.7 fold, respectively, and increased the percentage of AOB within total ammonia oxidizers from 3.1% to 10.8%. The abundance of nirK-like denitrifiers increased with grazing intensity, while the abundance of nirS-like denitrifiers tended to decrease. However, sub-groups within each of these broad groups of (de)nitrifiers responded differently to grazing. Soil nitrate was the main driver of the abundance of denitrifier sub-groups (nirK or nirS) positively responding to grazing, while soil moisture and carbon concentration were the main drivers of the abundance of denitrifier sub-groups negatively responding to grazing. AOB and nirK-harboring denitrifiers thus generally responded more positively to grazing than AOA and nirS-harboring denitrifiers, but significant functional diversity existed within each group. Our approach demonstrates the usefulness of the concept of response groups to better characterize and understand (de)nitrifier response to grazing.  相似文献   

16.
Fungal denitrification in soils is receiving considerable attention as one of the dominant N2O production processes. However, because of the lack of a methodology to detect fungal denitrification-related genes, the diversity and ecological behavior of denitrifying fungi in soil remains unknown. Thus, we designed a primer set to detect the fungal nitrite reductase gene (nirK) and validated its sensitivity and specificity. Through clone library analyses, we identified congruence between phylogenies of the 18S rRNA gene and nirK of denitrifying fungal isolates obtained from the surface-fertilized cropland soil and showed that fungi belonging to Eurotiales, Hypocreales, and Sordariales were primarily responsible for N2O emissions in the soil.  相似文献   

17.
ABSTRACT

A long-term field experiment was performed to assess the effects of fertilization regimes on greenhouse gas emissions, soil properties, soil denitrifies, and maize (Zea mays) grain yield on Mollisols of Northeastern China. Chemical nitrogen (N), phosphorus (P), and potassium (K) fertilizers plus pig manure (MNPK) treatment significantly increased soil N2O emissions by 29.9–226.4% and global warming potential (GWP) by 29.8–230.7% compared to unfertilized control (CK), chemical N fertilizer only (N), chemical N, P, and K fertilizers (NPK) and chemical N, P, and K fertilizers plus corn straw (SNPK) treatments. However, the MNPK treatment yielded similar greenhouse gas intensity (GHGI) as compared with other treatments, mainly due to higher maize grain yield. There were also higher gene copy numbers of nirK, nirS, and nosZ in topsoil (0–20 cm depth) under MNPK treatment. Automatic linear modeling analysis indicated that main factors influencing soil N2O emissions were soil organic carbon (SOC), NO3? content, and nirK gene abundance. Although the application of chemical fertilizers plus organic manure increases N2O emissions due to higher N and C availability and nirK gene activity in the soil, this is still a promising fertilizer management due to its notable enhancement of maize grain yield and SOC content.  相似文献   

18.
Previous reports indicated that the emission of nitrous oxide (N2O) when manure compost pellets (MCP) were applied to soil was greater than when ordinary manure compost or inorganic fertilizer was applied, but that applying pellets of nitrogen-enriched manure compost, a by-product of deodorizing manure during composting, resulted in N2O emission rates less than those from MCPs. To investigate the mechanism by which N2O emission rates and cumulative emissions were reduced in nitrogen-enriched manure composts pellets (N+MCP), we studied the impact of pellet pH on N2O emission, because pH is different between MCP (pH 8.6) and N+MCP (pH 5.3). In an incubation experiment, the pH of pellets was adjusted to five levels (5.3, 6.0, 7.0, 8.0 and 8.6) with acid or alkaline solutions, and the pellets were incubated without soil in a beaker at 30°C for 90 d (MCP) or 42 d (N+MCP). A large peak in N2O emission rate was observed soon after beginning the incubation (within 1–3 d) in the neutral and alkaline treatments for both MCP and N+MCP, and these peaks corresponded to a rise in the pellet nitrite contents. Thus, this N2O emission peak might have been generated by the denitrification of nitrite in the pellets. In the acid treatments of MCP, the N2O emission was distributed more in the later incubation period (14–90 d), when the reduction of nitrate in MCP occurred. This led to a significant increase in cumulative N2O emission as compared with the alkaline treatments for MCP. Regarding the mechanism by which N2O emission was reduced in N+MCP, although larger cumulative N2O emission rates in the earlier stage (0–14 d for MCP and 0–7 d for N+MCP) were observed when the pellet pH was adjusted close to 7.0, lowering the pH of MCP to 5.3 (the pH of N+MCP) did not demonstrate a significant decrease in cumulative N2O emission as compared with the original pH treatment (pH 8.6). These results indicate that pellet pH might not relate directly to the mechanism by which N2O emission was reduced in N+MCP.  相似文献   

19.
Agricultural management significantly affects methane (CH4) and nitrous oxide (N2O) emissions from paddy fields. However, little is known about the underlying microbiological mechanism. Field experiment was conducted to investigate the effect of the water regime and straw incorporation on CH4 and N2O emissions and soil properties. Quantitative PCR was applied to measure the abundance of soil methanogens, methane-oxidising bacteria, nitrifiers, and denitrifiers according to DNA and mRNA expression levels of microbial genes, including mcrA, pmoA, amoA, and nirK/nirS/nosZ. Field trials showed that the CH4 and N2O flux rates were negatively correlated with each other, and N2O emissions were far lower than CH4 emissions. Drainage and straw incorporation affected functional gene abundance through altered soil environment. The present (DNA-level) gene abundances of amoA, nosZ, and mcrA were higher with straw incorporation than those without straw incorporation, and they were positively correlated with high concentrations of soil exchangeable NH4+ and dissolved organic carbon. The active (mRNA-level) gene abundance of mcrA was lower in the drainage treatment than in continuous flooding, which was negatively correlated with soil redox potential (Eh). The CH4 flux rate was significantly and positively correlated with active mcrA abundance but negatively correlated with Eh. The N2O flux rate was significantly and positively correlated with present and active nirS abundance and positively correlated with soil Eh. Thus, we demonstrated that active gene abundance, such as of mcrA for CH4 and nirS for N2O, reflects the contradictory relationship between CH4 and N2O emissions regulated by soil Eh in acidic paddy soils.  相似文献   

20.
Bacterial-feeding nematodes represent an important driver of the soil microbial activity and diversity. This study aimed at characterizing the impact of nematode grazing on a model functional bacterial guild involved in N-cycling, the denitrifiers. Bacterial-feeding nematodes (Cephalobus pseudoparvus) were inoculated into soil microcosms whose indigenous nematofauna had previously been removed. The size, genetic structure and activity of the soil denitrifier community were characterized 15 and 45 days after nematodes inoculation using quantitative PCR of the nirK, nirS and nosZ denitrification genes, fingerprinting of the nirK and nirS genes and denitrification enzyme activity measurements, respectively. A significant impact of C. pseudoparvus was observed on genetic structure of the nirK community, mainly due to shifts in the relative abundance of the dominant populations, but not on the nirS community. The grazing pressure also tended to decrease the density of all denitrification genes as well as that of 16S rRNA genes. Despite being non-significant, the extent of this decline in gene copy numbers ranged between 60 and 80% of the control microcosm genes densities. Finally, compared to non-inoculated microcosms, denitrification activity significantly decreased by 8% in response to the nematodes inoculation. The herewith data showed that predation by a single species of bacterial-feeding nematode can affect the soil denitrifier community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号