首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
IntroductionSoilpropertiesdependonclimate,vegetationtypes,parentmaterials,landformandsoilderivedage(Bei-jingForestryCoIlege1982).VegetationpIaysasig-nificantroIeintheformationofsoiIparticuIarIyforthepropertiespfSurfBcesoil.PlantsabsorbselectivelynutrientfromsoilandbuiIdtheirbodies.ThenutrientpartofIitterdecomposedgradualIybymicrobeswouldraturntoground-TheroOtsystemOfplantaIsoplaysasignificantroleinsoiIproperties.EffectofpIantsonsoildependonthevegdstiontype,speciescomposi-tion,age,dens…  相似文献   

2.
JOHANSSON  M .-B. 《Forestry》1995,68(1):49-62
Needle litter from 14 stands of Scots pine (Pinus silvestris,L.), 13 stands of Norway spruce (Picea abies (L.) Karst.) andleaf litter from three stands of white birch (Betula pubescensEhrh.) were analysed for chemical composition. The concentrationsof the elements N, P, K, Ca, Mg and Mn as well as solid organiccomponents (lignin, cellulose and hemicelluloses) and solubleswere determined. When the average chemical compositions werecompared the Scots pine needle litter was clearly the most nutrient-poorlitter type. Of the solid organic-chemical components the ligninfraction dominated in the spruce and birch litter whereas thecellulose dominated in the pine needle litter. When Norway spruce and Scots pine were growing in adjacent standson soils with the same bedrock origin the spruce litter hadsignificantly higher concentrations of nutrients (N, P, K, Ca,Mg, Mn) than the pine needle litter. At sites where Norway spruceand white birch were growing in adjacent stands, the birch leaflitter had generally higher concentrations of nutrients. However, significant or nearly significant differences were onlyobtained for Mg (P = 0.002), K (P = 0.056) and N (P = 0.087),probably due to the few replicates of stands compared. Concerningorganic chemical components, the spruce needle litter had significantlyhigher concentrations of lignin and mannan than all the otherlitters and lower levels of ethanol-soluble substances, celluloseand galactan than the pine needle litter. Further, it had lowerconcentrations of water solubles, rhamnan and xylan than thebirch litter. No relationships were established between the nutrient statusof the conifer litters and the site index H100 (the dominantheight of the trees at a reference age of 100 years) of thestands. Concentrations of solid carbohydrates in the litterswere, however, positively correlated with site index (P <0.001). Further, the concentration of nitrogen in the pine needlelitter was negatively correlated with the latitude of the sites(P < 0.01). The influence of litter chemistry on the decompositionof litter and nutrient cycling of forests is discussed.  相似文献   

3.
SuccessionisthedynanucdeveloPInentofecosystemswhichcanbecharactetindbyenergyandndneralcyclings.Eachsuccessionstagehasitscharaceristicsofelementcycling.SomeschOlarshaveStatedbutbrieflawsofnutrienCyclinginsuccessionstagesI"3I.InthespaPer,thenutrientcyclingcharacterishcsofbirchsuccessionseriesinXiaokinganlingwerediscussed.SwrYAasAroarernoDSThestUdyareaislocatedinLiangshniNatUralReservesinthendddieofXiaox-ing'anlilg(l28"53,2o'rE,47olo'5O"N).Theclimat6belongstocontinentalmonsoonclimate,W…  相似文献   

4.
The influence of stand composition and age on forest floor chemical properties, nitrogen availability, and microbial activity was examined in mixed and pure stands of Douglas-fir (Pseudotsuga menziesii) and paper birch (Betula papyrifera). Decomposition of Douglas-fir and birch litter over two years as well as annual litter input was also measured. Mixed and pure stands of each species aged 10–25, 50–65 and >85 years old were selected in the Interior Cedar Hemlock (ICH) zone of southern interior British Columbia. Significantly more total N was mineralized in the forest floor of pure birch compare to that of pure Douglas-fir stands while forest floor of mixed species stands had intermediate N mineralization values. When sampling times were pooled forest floor N mineralization was lowest in the young stands compared to the older stands. Stand composition did not significantly affect litter decomposition were found in litter decomposition, microbial respiration and biomass. Stand age, however, did affect these parameters significantly. More birch litter mass was lost in young stands than in their older counterparts while the opposite trend was observed for fir litter. Generally, lower basal respiration, microbial biomass and Cmic/Corg was found in young compared to older stands. Concentrations and contents of forest floor total N and exchangeable K and Mg, and pH under pure birch were consistently higher compared to pure Douglas-fir. While forest floor total C, available P contents, exchangeable K and Mg concentrations were lowest in young stands, no differences were observed for total N and exchangeable Ca. All litter nutrient concentrations and contents were highest in pure birch stands. No clear trends could be discerned in litter nutrient concentration data among stand ages, although when converted to nutrient contents, there was a general increase with stand age. Both stand type and age had significant effects on forest floor properties and processes suggesting that stand age is another factor to evaluate when assessing the influence of forest composition on forest floor processes and chemistry. In terms of the effect of mixture, the data indicated that the maintenance of paper birch in mixed stands in these forest may have some effect on nutrient availability and status.  相似文献   

5.
Soil properties were compared in adjacent 50-year-old Norway spruce, Scots pine and silver birch stands growing on similar soils in south-west Sweden. The effects of tree species were most apparent in the humus layer and decreased with soil depth. At 20-30 cm depth in the mineral soil, species differences in soil properties were small and mostly not significant. Soil C, N, K, Ca, Mg, and Na content, pH, base saturation and fine root biomass all significantly differed between humus layers of different species. Since the climate, parent material, land use history and soil type were similar, the differences can be ascribed to tree species. Spruce stands had the largest amounts of carbon stored down to 30 cm depth in mineral soil (7.3 kg C m−2), whereas birch stands, with the lowest production, smallest amount of litterfall and lowest C:N ratio in litter and humus, had the smallest carbon pool (4.1 kg C m−2), with pine intermediate (4.9 kg C m−2). Similarly, soil nitrogen pools amounted to 349, 269, and 240 g N m−2 for spruce, pine, and birch stands, respectively. The humus layer in birch stands was thin and mixed with mineral soil, and soil pH was highest in the birch stands. Spruce had the thickest humus layer with the lowest pH.  相似文献   

6.
土壤水分梯度对阔叶红松林结构的影响   总被引:2,自引:0,他引:2  
2002年8月,在吉林省白河林业局红石林场(12755E,4230N),沿着一个山坡设置了一个长宽为112m8m、包含14个样方的样带。调查了群落结构、0-10cm和10-20cm的土壤含水量、枯落物现存量及其C、N、P含量,主要树种的叶片和枝条的C、N、P含量。沿着山坡的不同位置土壤含水量的不同导致阔叶红松林的群落结构发生变化。蒙古栎的比例随着土壤含水量的下降而逐渐升高,而其他主要阔叶树种则逐渐减少乃至消失。枯落物的水分变化趋势与土壤一致。在不同坡位枯落物的分解状况不同,干重差异显著。坡下枯落物含量较坡上的丰富,部分原因在于群落结构的变化。水分和养分含量的变化影响了枯落物的成分、降解及其养分的释放,进一步影响了林木的生长速度和林分结构并最终影响整个生态系统。图7表2参14。  相似文献   

7.
Jack pine and trembling aspen are boreal tree species that are found growing either in naturally regenerated mono-specific stands, or in mixed-wood stands. We conducted a field survey and a manipulative field study to test the productivity-diversity hypothesis, which predicts that mixed-wood stands are more likely to occur on fertile soils, or following fertilization. We surveyed 44 mixed-wood stands and found 43 of these occurring on fertile clay deposits, and only one occurring on a nutrient poor till deposit. By contrast, the area surveyed comprised 45% clay and 55% till deposits. In a second study, we conducted a five year fertilization and brushing trial in a recently burned area dominated by jack pine saplings with patches of regenerating trembling aspen. Fertilization without brushing improved the growth and recruitment of aspen stems, but had no effect on jack pine growth and recruitment. Fertilization + brushing increased the growth of jack pine. Brushing the aspen, with or without fertilization, resulted in higher recruitment of jack pine. We conclude that soil fertility controls the mixing of jack pine with trembling aspen, that fertilization increases the likelihood of encroachment of aspen into areas formerly dominated by jack pine, and that brushing along with fertilization is necessary to promote jack pine growth.  相似文献   

8.
Whole-tree harvesting (WTH), where logging residues are removed in addition to stems, is widely practised in Fennoscandian boreal forests. WTH increases the export of nutrients from forest ecosystems. The extent of nutrient removals may depend on tree species, harvesting method, and the intensity of harvesting. We developed generalized nutrient equations for Scots pine (Pinus sylvestris L.), Norway spruce (Picea abies Karsten), and birch (Betula pendula Roth and Betula pubescens Ehrh.) stands to be able to calculate the amounts of nitrogen, phosphorus, potassium, and calcium in stems and above-ground biomass (stem and crown) as a function of stand volume. The equations were based on Fennoscandian literature data from 34 pine, 26 spruce, and 5 birch stands, and they explained, depending on the tree species and nutrient, 61–99% and 56–87% of the variation in the nutrient amounts of stems and above-ground biomass, respectively. The calculations based on the equations showed that nutrient removals caused by stem-only harvesting (SOH) and WTH per harvested stem m3 were smaller in pine than in spruce and birch stands. If the same volume of stem is harvested, nutrient removals are, in general, nearly equal at thinnings and final cuttings in SOH, but larger in thinnings than final cuttings in WTH. If the principal aim is to minimize the nutrient removals per harvested stem m3, the harvesting should be done at mature pine stands. The effect of biomass removal on overall site nutrient status depends on site-specific factors such as atmospheric deposition, weathering of minerals, and the size of the nutrient pools in the soil.  相似文献   

9.
The effect of tree species mixture on stand volume yield and on tree-species-specific diameter and height growth rates were analysed in managed mixed stands of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Ehrn.).Data were obtained from 14 repeatedly measured stands located in Southern Finland on mineral soil sites with varying admixture of Scots pine and silver birch. Statistical analysis was carried out for studying the effect of species mixture on the development of stand characteristics. For the analysis, the plots were categorised into three groups (plot types) according to the species dominance. In order to analyse species-specific growth rates, individual-tree mixed linear growth models for tree diameter and height growth were developed for both tree species.The results clearly show that the yield of the managed mid-rotation, mixed stands was greater for stands dominated by Scots pine than for stands dominated by birch, and the stand volume increment decreased with an increasing proportion of silver birch. Analysis of diameter and height growth by tree species revealed that the main reason for this pattern is the negative impact of birch competition on the growth of pine trees. The increase in diameter of pine was clearly hampered if the proportion of birch was high. An abundance of birch also slightly decreased the growth in height of Scots pine, although the effect was less than on diameter growth. Species mixture did not affect the diameter growth of birch but did have a significant effect on height development. Height growth of birch was considerably greater in pine-dominated stands than in birch-dominated stands. In pine-dominated mixed stands, the height growth of birch was quite close to that of dominant pine trees, and birches can endure in competition with pines for light.The results apply for even-aged and single-storey managed stands, where stocking density and structure are controlled with pre-commercial and commercial thinnings. The results are not applicable to unmanaged mixed stands undergoing self-thinning. This study provides new information on mixed stands from a silvicultural perspective, which can be applied in decisions involving the management of mixed stands.  相似文献   

10.
Patterns of litter decomposition and nitrogen (N) and phosphorus (P) release in relation to various levels of canopy cover were examined using litterbags placed on the forest floor of northern red oak (Quercus rubra L.) and red pine (Pinus resinosa Ait.) stands in northern Lower Michigan, USA. A series of experimental plots consisted of four levels of canopy cover treatments, i.e. clearcut, 25% (50% during first sampling year), 75%, and uncut. Mass loss from decomposing leaves was higher for oak leaves in red oak stands (approximately 60% loss of the original mass) than for pine needles in red pine stands (approximately 40% loss of the original mass) during the 2 year study period. Leaf mass loss in the clearcut red oak treatment was significantly higher than in the uncut red oak treatment. In contrast, no canopy cover effects on litter mass loss were found in red pine stands. Nitrogen concentrations in decomposing litter increased during the 2 year period in all canopy cover treatments in both stand types, but they did not differ significantly among canopy cover treatments. These results indicate that various levels of red oak and red pine canopy removal generally have a minor impact on litter decomposition and nutrient (N and P) release during the first 2 years following canopy manipulation, except in red oak clearcuts.  相似文献   

11.
The Southeastern United States has a robust broiler industry that generates substantial quantities of poultry litter as waste. It has historically been applied to pastures close to poultry production facilities, but pollution of watersheds with litter-derived phosphorus and to a lesser extent nitrogen have led to voluntary and in some areas regulatory restrictions on application rates to pastures. Loblolly pine (Pinus taeda L.) forests are often located in close proximity to broiler production facilities, and these forests often benefit from improved nutrition. Accordingly, loblolly pine forests may serve as alternative land for litter application. However, information on the influence of repeated litter applications on loblolly pine forest N and P dynamics is lacking. Results from three individual ongoing studies were summarized to understand the effects of repeated litter applications, litter application rates, and land use types (loblolly pine forest and pasture) on N and P dynamics in soil and soil water. Each individual study was established at one of three locations in the Western Gulf Coastal Plain region. Annual applications of poultry litter increased soil test P accumulation of surface soils in all three studies, and the magnitude of increase was positively and linearly correlated with application rates and frequencies. In one study that was established at a site with relatively high soil test P concentrations prior to poultry litter application, five annual litter applications of 5 Mg ha−1 and 20 Mg ha−1 also increased soil test P accumulation in subsurface soils to a depth of up to 45 cm. Soil test P accumulations were greater in surface soils of loblolly pine stands than in pastures when both land use types received similar rates of litter application. In one study which monitored N dynamics, lower soil organic N, potential net N mineralization, potential net nitrification, and soil water N was found in loblolly pine stands than pastures after two annual litter applications. However, increases in potential net N mineralization, net nitrification, and soil water N with litter application were more pronounced in loblolly pine than in pasture soils. Loblolly pine plantations can be a viable land use alternative to pastures for poultry litter application, but litter application rate and frequency as well as differences in nutrient cycling dynamics between pine plantations and pastures are important considerations for environmentally sound nutrient management decisions.  相似文献   

12.
Wang Ke  Zhang Yu 《林业研究》1995,6(1):12-17
Comparative analyses were conducted on the nutrient element content and returning amount of main fractional compositions of litter in Korean pine (KP), Mongolian Scots pine (MSP) and Dahurian larch (DL) plantations in Laoshan Plantation Experiment Station of Maoershan Experiment Forest Farm of Northeast Forestry University. The results are as follows: (1) The nutrient element content and returning amount in litter varies among different fractional compositions and tree species, the total returning amount of all nutrient elements and the returning amount of K, Ca, Mg, N and P are DL > MSP > KP, the returning amount of Cu is DL > KP > MSP, the returning amount of Fe and Mn are MSP > DL > KP; (2) To KP and DL plantations, the main nutrient element returned is dead needles; dead branches, bark scales and dead cones account for a little proportion; whereas to MSP plantation, besides dead needles, dead branches and bark scales also play an important role in the return of nutrient elements; (3) A little deal of dead leaves can provided a great deal of returning amount of nutrient elements.  相似文献   

13.
Niinemets U  Tamm U 《Tree physiology》2005,25(8):1001-1014
Extensive variation in fractional resorption of mineral elements from plant leaves is still not fully understood. In multi-species forest stands, species leaf fall phenology and leaf constitution may significantly modify the timing of nutrient return to the soil and overall plant nutrient loss. We studied leaf fall and nutrient loss kinetics, and leaf composition in three natural, temperate, deciduous broadleaf forest stands to determine the role of timing of leaf abscission and nutrient immobilization in cell walls on nutrient resorption efficiency of senescing leaves. Nitrogen (N), phosphorus and potassium contents decreased continuously in attached leaves after peak physiological activity during mid-season. Changes in nutrient contents of attached leaves were paralleled by decreases in nutrient contents in freshly fallen leaf litter. In different species and for different nutrients, resorption of nutrients from senescing leaves proceeded with different kinetics. The maximum nutrient resorption efficiency (the fraction of specific nutrient resorbed from the leaves at the end of leaf fall) did not depend on the mid-seasonal nutrient concentration. Species with earlier leaf fall resorbed leaf nutrients at a faster rate, partly compensating for the earlier leaf fall. Nevertheless, the litter-mass weighted mean nutrient contents in leaf litter were still larger in species with earlier leaf fall, demonstrating an inherent trade-off between early leaf fall and efficient nutrient resorption. This trade-off was most important for N. Losses of the non-mobile nutrients calcium and magnesium were unaffected by the timing of leaf fall. There was large variation in the maximum N resorption efficiency among species. Correlations among leaf chemical variables suggested that the maximum N resorption efficiency decreased with the increasing fraction of cell walls in the leaves, possibly due to a greater fraction of N occluded in cell wall matrix. We conclude that species leaf fall phenology and leaf chemistry modify the timing and quantities of plant nutrient losses, and that more diverse forest stands supporting a spectrum of species with different phenologies and leaf types produce litter with more variable chemical characteristics than monotypic stands.  相似文献   

14.
This paper summarises the results from 35 years-observed thinning experiments on 256 permanent sample plots in 10–60 year-old stands of ash, aspen, birch, oak, pine and spruce in Lithuania. Thinning enhanced crown projection area increment of residual trees. The largest effect was observed in stands of aspen and birch (growth increase by 200%), followed by ash and oak (over 100%), and spruce and pine (about 80%). Thinning also promoted dbh increment, especially in younger stands, and the increase of dbh increment was positively correlated with the thinning intensity. The strongest reaction was exhibited by oak and aspen, while ash, birch and conifers reacted to a lower extent. Low and moderate intensities of thinning stimulated volume production in younger stands while the opposite was observed in older stands with increasing removals. Spruce stands exhibited relatively strongest increase of volume increment and pine, –the weakest, while the effect on deciduous species was intermediate. The results demonstrate that significant increase in volume increment is achievable with thinning of only young forest stands, e.g. 10–20 year-old pine, birch and ash, or 10–30 year-old oak, aspen and spruce.  相似文献   

15.
Investigations were made in korean pine, mongolian scots pine and dahurian larch plantations in Laoshan Plantation Experiment Station of Maoershan Experiment Forest Farm of Northeast Forestry University. Data are tabulated on the amount and seasonal and annual fluctuations of fractional composition of the litter (conifer needles, branches, cones, bark scales, broad leaves) in the three plantations. The accounts of conifer needle branch and bark scale litter are as follows: korean pine: 71.16%, 6.23% and 7.32%; mongolian scots pine: 43.65%, 18.52 % and 32.12%; dahurian larch: 90.30%, 7.83% and 1.85%. There are certain broadleaf litter in dahurian larch and mongolian scots pine plantations (account for 7.61% and 8.92% respectively). The litter wither and fall concent ratively in autumn in dahurian larch plantation and scattered all year long in korean pine and mongolian scots pine plantations. Along with the increase of stand age, the absolute amount of litter tend to increase, the relative amount of main fractional compositions (conifer needle, branch and bark scale) in korean pine and mongolian Scots pine plantations maintain stead, whereas in dahurian larch plantation, the relative amount of conifer needle is decreased gradually and the relative amount of other fractional compositions are increased gradually.  相似文献   

16.
The effects of a birch admixture on the height and diameter growth and maximum branch diameter in planted Scots pine stands was studied using models constructed with a data set from 13 stands of 9–16 yrs of age and 2–8 m dominant height on average sites on mineral soils in southern Finland. The density and height of the birch varied highly between and within stands. Simulated results indicated that the pines were capable of keeping up in height growth with birches that had originated from seed. Even a very high number of birches (10?000 stems ha?1) had virtually no effect on the height growth of the pines. The number of birches had a pronounced effect on the diameter growth and the maximum branch diameter in pine. Retention of a temporary birch component in young pine stands seems a feasible way of mitigating the adverse effects of low planting densities on the external quality of pine.  相似文献   

17.
Seethefirstpartofthisstudy[']forthepurposeandsignificanceofthestudies,thegeneralsituationofexperimentplotsandresearchmethod,thispartmainlydiscussthenutrientelementcontentandreturningamountofmainfractionalcompositionsoflitterinKoreanpine(KP),MongolianScotspine(MSP)andDahurianlarch(DL)plantationsinLaoshanPlantationExperi-mentStationofMaoershanExperimentForestFarmofNortheastForestryUni-versity-CHEMICALANALYSISMETHODSoFNUTRixNTELEMENTSINLITTERTheovendriedsamplesofdeadneed…  相似文献   

18.
文章以赛罕乌拉4种典型林分为对象,对其林下植被及枯落物层的水源涵养功能进行了初步研究。结果表明:①林分结构越复杂,林下植被物种多样性越大,其截留降雨的能力也越大。②4种林分枯落物的蓄积量范围在12.44~31.60t/hm2,针叶林枯落物的蓄积量明显高于阔叶林。③枯落物持水率大小顺序为山杨林>白桦林>山杨白桦林>落叶松林,山杨林分枯落物的最大吸水率(511%)为落叶松林分(280%)的1.8倍。④枯落物最大持水量的大小为阔叶混交林>针叶林>阔叶林。枯落物最大拦蓄量大小表现为:针叶林>阔叶混交林>阔叶林。落叶松林的有效拦蓄量最高(为6.56mm),白桦林分有效拦蓄量最小(为3.38mm)。  相似文献   

19.
橡胶间种砂仁模式下凋落物的特征   总被引:4,自引:0,他引:4  
文章研究了橡胶+砂仁胶园间种模式凋落物的年凋落总量和节律、凋落物组成、分解速率、营养元素及养分释放。结果表明:橡胶林下间种砂仁的胶园凋落物具有较多的热带季雨林的特征,总凋落量为7.65t/hm2·a,与海南岛山地雨林相近;凋落物组分中明显较高的叶含量形成了橡胶+砂仁模式自己独特的凋落物组分比值;占凋落物总量39.7%的砂仁枯落物,在胶砂复合生态系统的养分归还上占有十分重要的地位。  相似文献   

20.
对塞罕坝机械林场8个林分类型108个林班的地表森林可燃物组成、载量、含水率等进行了调查。结果表明落叶松成林和幼林、樟子松成林和幼林、针叶混交林、桦次生林等林分地表可燃物以枯落物为主,栎次生林和灌木林地表可燃物由枯落物与灌木组成,未成林地与草地可燃物以草本植物为主;地表可燃物载量依次为落叶松成林〉落叶松幼林〉针叶混交林〉樟子松成林〉樟子松未成林〉针阔混交林〉桦次生林〉樟子松幼林〉落叶松未成林〉灌木林〉栎次生林〉草地;草地与栎次生林的含水率最低,着火点也最低,火险危险程度最高;将现有林分按燃烧类型划分为5个类型20个亚类,全场地表可燃物总载量约为2.5×10^6t。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号