首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We studied the rates and patterns of carbon and nutrient fluxes in litterfall in ten tropical tree plantation species grown at the USDA Forest Service Arboretum in the Luquillo Experimental Forest, Puerto Rico. The stands were 26-years old and grew under similar climatic and edaphic conditions. Individual plantation species ranked differently in terms of their capacity to return mass and specific nutrients to the forest floor, and with respect to their efficiency of nutrient use. The species that returned the most mass did not return the most P, N, or cations. Moreover, species differed according to the amount of N and P resorption before leaf fall. These differences reflect the variation in the ecophysiological response of each species to edaphic and climatic conditions. The difference between average and minimum resorption values of the species studied indicate that other environmental factors, such as heavy winds or the physical effects of heavy rains, can force the shedding of non-senesced leaves. This higher quality material, although not very much in quantity, can provide a small pulse of available nutrients to the forest floor community. The same holds true for other high nutrient/low mass fractions of litterfall such as reproductive parts and miscellaneous materials.In areas with no prevalent or strongly seasonal water limitations, temporal variations of leaf litter on the forest floor are the combined result of the rate of fall and decomposition of the falling material, and the diverse responses of species to different environmental cues. Leaf fall was inversely correlated to reduced water availability in three of the species studied. Leaf fall of the other species was correlated either to daylight duration or minimum temperatures. The results highlight the importance of understanding species performance relative to nutrient and mass metabolism before selection for plantation use, or for rehabilitation of degraded lands.  相似文献   

2.

The leaves and leaf litter of Cryptomeria japonica D. Don was collected from April 1994 to March 1995 to describe the seasonal changes in nutrient concentrations in leaves and leaf litter. Nitrogen (N), phosphorus (P) and potassium (K) concentrations were in the order new leaves > old leaves > leaf litter, whereas calcium (Ca) concentration was in the order leaf litter > old leaves > new leaves during the whole year. N, P and K concentrations were at their highest during the new leaf growth phase, and then decreased as a result of the diluting effect and translocation, whereas Ca increased with time. Magnesium did not show any clear seasonal trend compared with other nutrients. N resorption efficiency was lower than P resorption efficiency. There were two nutrient resorption peaks, which could be attributed to high nutrient translocation to new leaves in the spring and to translocation from old leaves before senescence in the autumn. A significant correlation between N and P resorption was observed.  相似文献   

3.
Minor stream bottoms (alluvial floodplains) in the southeastern United States contain large areas of hardwood forests which are a potential sink for upstream nutrients. As a sink, they serve an important role in reducing the loss of nutrients from the sites via the watershed. However, little is known about nutrients stored in forest litter that have the potential to be cycled back to the forest or lost through removal from the site. Three hardwood stands of varying management regimens that span common scenarios found in north Louisiana were sampled for nutrient concentration and quantity in falling litter including leaf, woody, and other debris. Across sites, the well-drained site constitutively contributed more nutrients in litter than the poorly drained sites. Also, the sampling time spanning from March to October had the most litter fall and subsequent nutrient discharge from the trees. Of the five nutrients measured, nitrogen was the largest component followed by potassium. These features in nutrient quantity have broad implications for nutrient management based on site and timing of timber removal. This study provides novel nutrient levels in litter fall of hardwood forests typical along minor stream bottoms.  相似文献   

4.
不同林龄樟子松叶片养分含量及其再吸收效率   总被引:28,自引:0,他引:28  
树木叶片的养分再吸收效率能够反映树木对养分保存、利用以及对养分贫瘠环境的适应能力。以科尔沁沙地东南缘章古台地区樟子松人工林为研究对象,分析了11、20、29、45年生树木叶片的基本特征、养分含量及其再吸收效率。结果表明:叶片衰老后其质量和面积明显减少;叶片凋落前的平均养分含量没有表现出随樟子松年龄增加而出现有规律的变化;凋落叶片中的N、P、K、Mg含量表现出随年龄增加而增加的趋势,而Ca的趋势与之相反;11年生和20年生的樟子松叶片N、P、K的再吸收效率相似,都显著高于29年生和45年生樟子松(P<0.05),而樟子松叶片对Mg的再吸收效率表现出随年龄增大而显著降低,Ca随叶片的衰老而不断累积,再吸收效率表现为负值,20年生的樟子松叶片Ca再吸收效率最大,11年生和45年生最低。樟子松叶片的N、P、K、Mg养分再吸收效率随年龄增加而降低的趋势表明,随年龄增加樟子松对贫瘠养分生境的适应能力逐渐降低,反映了樟子松养分保存方面的衰退特征。  相似文献   

5.
Leaf-fall phenology was studied in a cool–temperate deciduous broad-leaved forest in central Japan in relation to the topographic environmental gradients that occur along a short mountain slope. Leaf-fall phenology was described quantitatively using data from leaf litter collected along the slope. In autumn, leaf fall at the study site tended to occur slightly earlier on the upper slope than on the lower slope. This pattern was found at both the stand and the species levels. Our results suggest that leaf-fall phenology may be affected by difference in microclimatic conditions, because environmental conditions are thought to be more severe on the upper slope than on the lower slope. The less intensive methods used in this study, the litter trap method, and Dixon’s model succeeded in quantifying the phenological patterns of leaf fall within stands and within species along the short mountain slope.  相似文献   

6.
Biomass and nutrient transfer (N, P, K, Ca, Mg) of bilberry (Vaccinium myrtillus L.) leaf litter fall, as well as decomposition and nutrient release, were studied in four mature forest stands situated in Central and South Sweden. Bilberry leaf litter fall amounted to between 33 and 55 kg ha‐1 yr‐1 in the four stands. Only minor differences between sites were noted for litter concentrations of N, P and Ca, whereas K and Mg showed somewhat larger variability. Relative amounts of the five nutrient elements in the litter fall were generally in the order N > Ca > K > Mg > P. The amounts of nutrients returned to the forest floor by the annual leaf litter fall in the stands ranged from 0.4 to 0.8 kg ha‐1 for N, 0.4 to 0.6 kg ha‐1 for Ca, 0.2 to 0.7 kg ha‐1 for K, 0.1 to 0.2 kg ha‐1 for Mg and 0.04 to 0.08 kg ha‐1 for P.

The decomposition of the local bilberry leaf litter was followed by means of litterbags during three years. At all sites there was an extremely rapid mass loss from the litter (between 45% and 54%) during the first four to five months of decomposition. After this initial phase, the decomposition rates decreased markedly and after three years the accumulated mass losses of the litters varied between 64% and 78% at the studied sites. After two and three years of decomposition, three of the sites exhibited almost similar litter mass losses whereas at the fourth site the litter was decomposed to a significantly lower degree. The pattern of nutrient release from the decomposing bilberry leaf litter differed somewhat from site to site. Minor differences were, however, noted for P, Ca and Mg while N and K were more strongly retained in the litter at one of the sites.  相似文献   

7.
  • ? The resorption of nutrients (mainly N and P) from senescing leaves may be a key component of adaptive mechanisms that conserve scarce nutrients. Resorption may be expressed in two ways as resorption efficiency (RE) which is the ratio of the resorbed amounts of nutrient losses during leaf senescence in relation to its prior amount deposited in leaves and resorption proficiency (RP) is the level to which nutrient concentration per unit leaf mass is reduced in senescent leaves.
  • ? There is still much debate whether or not different life-forms (i.e. deciduous and evergreen species) show different foliar resorption patterns. Two sympatric species, namely Quercus petraea (Mattuschka) Liebl. subsp. iberica (Steven ex Bieb.) Krassiln. (deciduous) and Arbutus andrachne L. (evergreen) along an elevational gradient were compared with each other to determine whether or not nitrogen and phosphorus resorption efficiency and proficiency varies along the elevational gradient and which leaf parameters were as related to RE and RP.
  • ? NRE was found to be rather low in Q. petraea subsp. iberica compared to other deciduous species. Similarly, PRE in A. andrachne was rather low compared to other evergreen species. Mean residence time (MRT) measures how long a unit of nitrogen (MRTN) and phosphorus (MRTP) is present in the plant. MRTN and MRTP were found to be considerably higher in A. andrachne compared to Q. petraea subsp. iberica. In both species, the foliar N/P ratio was below 14 along the elevational gradient and, according to this threshold value, N-limitation occurred in the study area. Although both species in the present study show incomplete resorption deciduous species was more proficient as compared to evergreen one due to low N and P concentrations in senescent leaves. Based on the significant correlations (p < 0.05 and 0.01) between MRT and foliar resorption, it can be concluded that MRT could interfere with the mechanisms controlling nutrient resorption.
  •   相似文献   

    8.
    The light screen hypothesis states that foliar anthocyanins shade the photosynthetic apparatus from excess light. In this paper we extend the light screen hypothesis, postulating that plant species at risk of photoinhibitory conditions during autumnal leaf senescence often utilize anthocyanins to protect the photosynthetic apparatus during the period of nutrient resorption. When senescence-related photosynthetic instabilities are compounded by other environmental stresses, particularly low temperature, severe photoinhibition may result in reduced resorption of critical foliar nutrients, which can significantly affect plant fitness. There is evidence that environments where low and often freezing temperatures are common in autumn selectively favor the production of anthocyanins in senescing foliage. The stimuli for, and the timing and location of, autumnal anthocyanin production are all consistent with a photoprotective role for these pigments in senescing leaves. Furthermore, differences in nitrogen allocation strategies between early and late successional species appear to affect photosynthetic stability during leaf senescence, resulting in a reduced need for foliar autumnal anthocyanins in many early successional plants. The ecological and physiological evidence presented in this paper suggest that, for many deciduous species, the production of anthocyanins provides effective photoprotection during the critical period of foliar nutrient resorption.  相似文献   

    9.
    Avicennia marina is a typical mangrove species of subtropical coastlines of China. However, little is known about the retention of nutrients by this species in oligotrophic, coastal environments. In this study, seasonal changes in nitrogen (N) and phosphorus (P) concentrations, N:P ratio and total phenolic concentration in A. marina leaves during senescence were studied. Avicennia marina leaves had high N and P concentrations but the seasonal pattern of N concentration was different from that of P concentration. The A. marina forest was N-limited as the N:P ratio of mature leaves was less than 14. Nitrogen resorption efficiency was higher than P resorption efficiency, and the concentrations of N and P in senescent leaves indicated that N resorption was mostly complete whereas P resorption was incomplete. Avicennia marina leaves contained low tannin concentrations, particularly condensed tannins, as the leaf extracts did not react with acid butanol. Total phenolic concentrations were not correlated with N concentrations in mature and senescent leaves of A. marina. These findings suggest that the high N resorption efficiency and low nutrient losses play an important role in nutrient conservation strategies for A. marina forests, whereas low tannin concentations have limited effects on nutrient cycling.  相似文献   

    10.
    土壤水分梯度对阔叶红松林结构的影响   总被引:2,自引:0,他引:2  
    2002年8月,在吉林省白河林业局红石林场(12755E,4230N),沿着一个山坡设置了一个长宽为112m8m、包含14个样方的样带。调查了群落结构、0-10cm和10-20cm的土壤含水量、枯落物现存量及其C、N、P含量,主要树种的叶片和枝条的C、N、P含量。沿着山坡的不同位置土壤含水量的不同导致阔叶红松林的群落结构发生变化。蒙古栎的比例随着土壤含水量的下降而逐渐升高,而其他主要阔叶树种则逐渐减少乃至消失。枯落物的水分变化趋势与土壤一致。在不同坡位枯落物的分解状况不同,干重差异显著。坡下枯落物含量较坡上的丰富,部分原因在于群落结构的变化。水分和养分含量的变化影响了枯落物的成分、降解及其养分的释放,进一步影响了林木的生长速度和林分结构并最终影响整个生态系统。图7表2参14。  相似文献   

    11.
    The influence of stand composition and age on forest floor chemical properties, nitrogen availability, and microbial activity was examined in mixed and pure stands of Douglas-fir (Pseudotsuga menziesii) and paper birch (Betula papyrifera). Decomposition of Douglas-fir and birch litter over two years as well as annual litter input was also measured. Mixed and pure stands of each species aged 10–25, 50–65 and >85 years old were selected in the Interior Cedar Hemlock (ICH) zone of southern interior British Columbia. Significantly more total N was mineralized in the forest floor of pure birch compare to that of pure Douglas-fir stands while forest floor of mixed species stands had intermediate N mineralization values. When sampling times were pooled forest floor N mineralization was lowest in the young stands compared to the older stands. Stand composition did not significantly affect litter decomposition were found in litter decomposition, microbial respiration and biomass. Stand age, however, did affect these parameters significantly. More birch litter mass was lost in young stands than in their older counterparts while the opposite trend was observed for fir litter. Generally, lower basal respiration, microbial biomass and Cmic/Corg was found in young compared to older stands. Concentrations and contents of forest floor total N and exchangeable K and Mg, and pH under pure birch were consistently higher compared to pure Douglas-fir. While forest floor total C, available P contents, exchangeable K and Mg concentrations were lowest in young stands, no differences were observed for total N and exchangeable Ca. All litter nutrient concentrations and contents were highest in pure birch stands. No clear trends could be discerned in litter nutrient concentration data among stand ages, although when converted to nutrient contents, there was a general increase with stand age. Both stand type and age had significant effects on forest floor properties and processes suggesting that stand age is another factor to evaluate when assessing the influence of forest composition on forest floor processes and chemistry. In terms of the effect of mixture, the data indicated that the maintenance of paper birch in mixed stands in these forest may have some effect on nutrient availability and status.  相似文献   

    12.
    Litterfall is an important ecological process in forest ecosystems, influencing the transfer of organic matter, carbon (C), nitrogen (N), phosphorous (P) and other nutrients from vegetation to the soil. We examined the production of different litterfall fractions as well as nutrient content and nutrient inputs by senesced and green leaf-litter in a semiarid forest from central Mexico. From September 2006 to August 2007, monthly litter sampling was carried out in monospecific and mixed stands of Quercus potosina and Pinus cembroides. Litterfall displayed a marked bimodal pattern with the largest annual amount (5993 ± 655 kg ha−1 yr−1) recorded in mixed stands, followed by Q. potosina (4869 ± 510 kg ha−1 yr−1), and P. cembroides (3023 ± 337 kg ha−1 yr−1). Leaves constituted the largest fraction of total litterfall reaching almost 60%, while small branches contributed with 20–30%. Overall, N content in leaf-litter was higher while lignin content was significantly lower for Q. potosina than for P. cembroides. Thus, greater litter quality together with higher litter production caused the largest C, N and P inputs to forest soils to occur in monospecific Q. potosina stands. Green leaf fall displayed significantly lower lignin:N and C:N ratios in Q. potosina than P. cembroides suggesting faster decomposition and nutrient return rates by the former. Although we recorded only two green leaf fall events, they accounted for 18% and 11% of the total N and P input, respectively, from leaf-litter during the study period. Apart, from the large spatiotemporal heterogeneity introduced by differences in litter quantity and quality of evergreen, deciduous and mixed stands, green litterfall appears to represent a much more important mechanism of nutrient input to semiarid forest ecosystems than previously considered.  相似文献   

    13.
    Leaf exchange is an abrupt phenological event that drastically modifies the morphology and physiology of the aerial portion of the plant. We examined if water and osmolyte differences between old leaves and new organs trigger leaf exchange, and whether the differences are closely linked to the resource resorption process in senescing leaves. We monitored concentrations of osmolyte, water, non-structural carbohydrate, nitrogen and potassium in senescing leaves and in emerging new leaves and inflorescences of a Mediterranean leaf exchanger (Cistus laurifolius L.) growing in NE Spain. Old leaves rehydrated markedly during most of the senescence process, which co-occurred with the extension of new shoots, suggesting the lack of a clear-cut switch in water supply from old to new organs. The accumulation of osmolytes in the early stage of leaf senescence might account for this rehydration. Osmolyte dynamics in old leaves depended largely on the progression of resource resorption from senescing organs but were mostly unrelated to water content during late senescence. We conclude that dehydration of old leaves is not a prerequisite for the triggering of leaf exchange. The finding that most nutrients and carbohydrates accumulated in new organs before senescing leaves massively exported resources, and the absence of relevant differences between the dynamics of old leaves at the base of inflorescences and those at the base of vegetative shoots, indicate that the nutrient and carbohydrate demands of new organs do not trigger leaf exchange.  相似文献   

    14.
    沙地柏对毛乌素沙地3种生境中养分资源的反应   总被引:22,自引:3,他引:22  
    为了揭示沙地柏对毛乌素沙地不同生境中养分资源的适应性反应 ,分析了固定沙地、流动沙地和滩地中土壤养分状况、生物量和养分在植株不同结构中的分配以及植株对不同养分的利用和重吸收效率。结果表明 :(1) 3种生境中的氮、磷、钾、钙和镁含量存在不同程度差异 ;(2 )生物量、氮和磷在叶片中分配比率随氮和磷含量的降低而增大 ,而在根中的分配恰好相反 ;(3)氮和磷重吸收效率、钾利用效率和重吸收效率、钙和镁利用效率随相应养分含量的降低而增大 ,氮和磷利用效率随氮和磷可利用性的降低而降低 ;(4)叶片和根系对养分内循环的贡献恰好相反 ;(5 )根分布对不同养分异质性的影响存在差异。  相似文献   

    15.
    Saplings of one half-sib family of birch, Betula pendula Roth, were exposed to three ozone concentrations (non-filtered air (NF); non-filtered air + 10-20 nmol O(3) mol(-1) (NF+); non-filtered air + 40-60 nmol O(3) mol(-1) (NF++)) in open-top chambers during two growing seasons from 1997 to 1998. Shed leaves were collected regularly during both growing seasons and, in 1998, the dry mass (DM) and nitrogen (N) concentrations ([N]) of the shed leaves were measured to quantify the total amount of N lost through litter fall. Dry mass and [N] were also determined in mid-August for attached, mature and non-senescent leaves, in order to estimate autumnal leaf N resorption efficiency and proportional leaf DM decrease. Net photosynthetic capacity was measured during August and September 1998, in a population of leaves that emerged in mid-July. Photosynthesis declined with increasing leaf age in the NF++ treatment, whereas it remained high throughout the measurement period in the NF and NF+ treatments. In both years, leaves abscised prematurely in the NF++ treatment, whereas this effect was only significant in 1998 in the NF+ treatment. There was a strong linear relationship between proportional leaf shedding and daylight ozone exposure above a threshold of 40 nmol mol(-1) (daylight AOT40) during the growing season. The resorption of N was significantly impaired by ozone, and the smaller autumnal decrease in leaf DM in elevated ozone concentrations suggested that the bulk resorption of leaf DM was also inhibited. Nitrogen resorption efficiencies were 81, 73 and 63% and leaf mass decreases were 45, 36 and 30% in the NF, NF+ and NF++ treatments, respectively. Compared with the NF treatment, total N loss through litter fall was increased by 16 and 122% in the NF+ and NF++ treatments, respectively. We conclude that ozone impaired N resorption from birch leaves before abscission, causing a substantial increase in whole-tree N loss through litter fall.  相似文献   

    16.
    NPK fertilization on a dwarf shrub pine bog initially increased the amount and nutrient content of the tree litter. Eight years after fertilization, however, the amount of micronutrients decreased compared to the amount of N and P in the litter. Fertilization on a fertile mire also increased the nutrient content of the litter fall, especially in the mature pine and birch stands. The amount of nutrients in the litter fall of the birch stands was considerably greater than that in the pine stand of the same volume.  相似文献   

    17.
    In mixed-species forests, tree species composition can affect nutrient return through litter fall. This in turn is expected to have an effect on soil available nutrients, which could influence the nutrient status at the local tree level. Using ion-exchange resins, we estimated resin available soil nutrients at two depths beneath target trees of sessile oak and beech in the Belgian Ardennes. First we tested whether resin available nutrients were related to tree nutrition, using foliar nutrient concentrations as a proxy. In a second step, we tested whether local litter fall, through total nutrient return or litter species composition, affected resin available nutrients. In a final stage, we tested the impacts of local stand composition, as an integrated proxy of above- and belowground processes, and compared them to those of litter composition. With the exception of P for oak, nutrient supply was only poorly related to foliar nutrient concentrations for both target species. The effects of litter fall on nutrient supply were driven by litter species composition and not by total nutrient inputs. Litter composition and local stand composition effects were in close agreement. Our results show that nutrient supply to target trees in mixed-species stands is affected by local neighbourhoods, yet to a limited extent. Direct translation of resin available nutrients into foliar concentrations is probably hampered by complex capture patterns.  相似文献   

    18.
    Internal nutrient recycling through retranslocation (resorption) is important for meeting the nutrient demands of new tissue production in trees. We conducted a comparative study of nutrient retranslocation from leaves of five tree species from three genera grown in plantation forests for commercial or environmental purposes in southern Australia--Acacia mearnsii De Wild., Eucalyptus globulus Labill., E. fraxinoides H. Deane & Maiden, E. grandis W. Hill ex Maiden and Pinus radiata D. Don. Significant amounts of nitrogen, phosphorus and potassium were retranslocated during three phases of leaf life. In the first phase, retranslocation occurred from young leaves beginning 6 months after leaf initiation, even when leaves were physiologically most active. In the second phase, retranslocation occurred from mature green leaves during their second year, and in the third phase, retranslocation occurred during senescence before leaf fall. Nutrient retranslocation occurred mainly in response to new shoot production. The pattern of retranslocation was remarkably similar in the leaves of all study species (and in the phyllodes of Casuarina glauca Sieber ex Spreng.), despite their diverse genetics, leaf forms and growth rates. There was no net retranslocation of calcium in any of the species. The amounts of nutrients at the start of each pre-retranslocation phase had a strong positive relationship with the amounts subsequently retranslocated, and all species fitted a common relationship. The percentage reduction in concentration or content (retranslocation efficiency) at a particular growth phase is subject to many variables, even within a species, and is therefore not a meaningful measure of interspecific variation. It is proposed that the pattern of retranslocation and its governing factors are similar among species in the absence of interspecies competition for growth and crown structure which occurs in mixed species stands.  相似文献   

    19.
    Studies on litterfall and decomposition provide estimations of decomposition rates of different ecosystems.This is key information to understanding ecosystem dynamics and changes in a scenario of global warming.The objective of this research was to assess litterfall production,the potential deposition of macro and micronutrients through leaf and twig fall as well as macronutrient—use efficiency in three forest ecosystems at different altitudes: a pine forest mixed with deciduous species(S1); a Quercus spp.forest(S2); and,a Tamaulipan thornscrub forest(S3).Total annual litterfall deposition was 594,742 and 533 g m~(-2) for S1,S2 and S3.Leaf litter was higher (68%) than twigs(18%),reproductive structures(8%) or miscellaneous material(6%).Micronutrient leaf deposition was higher for Fe followed by Mn,Zn and Cu.Macronutrient leaf deposition was higher for Ca followed by K,Mg and P.Even though P deposition in leaves and twigs was lower than other macronutrients,its nutrient use efficiency was higher than Ca,Mg or K.Altitude and species composition determine litter and nutrient deposition,with higher values at mid-altitudes(550 m).Altitude is an important factor to consider when analyzing litter production as well as nutrient deposition as shown in this study.Litter production and nutrient deposition are expected to change in a scenario of global warming.  相似文献   

    20.
    Seasonal changes in photosynthetic capacity, leaf nitrogen (N) content and N partitioning were studied from before leaf maturation (spring) until death (autumn) in high- and low-light-exposed leaves of a deciduous shrub, Lindera umbellata var. membranacea (Maxim.) Momiyama growing in a natural forest in northeast Japan. In spring, light-saturated photosynthetic rate (Pmax) was low despite high leaf N and Rubisco contents, indicating that the photosynthetic apparatus was not yet functionally developed. Rubisco seemed to be only partially active. In summer and autumn, Pmax per unit leaf N increased and changes in Pmax were correlated with changes in leaf N and two photosynthetic components, Rubisco and chlorophyll. Changes in these components paralleled the changes in leaf N. During leaf senescence, about 70% of leaf N was resorbed. Metabolic proteins that accounted for the majority of leaf N in summer were highly degradable and more than sufficient to explain the high N-resorption efficiency. Structural proteins represented only a small part of leaf N and were relatively resistant to degradation and thus contributed little to N resorption. Leaf N partitioning between metabolic and structural proteins determined the amount of retranslocatable N, but did not strictly determine the N content of a dead leaf or N-resorption efficiency.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号