首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Optical spectra of high-transition-temperature superconductors in the mid-infrared display a gap of in-plane conductivity whose role for superconductivity remains unresolved. Femtosecond measurements of the mid-infrared reflectivity of YBa(2)Cu(3)O(7-delta) after nonequilibrium optical excitation are used to demonstrate the ultrafast fill-in of this gap and reveal two gap constituents: a picosecond recovery of the superconducting condensate in underdoped and optimally doped material and, in underdoped YBa(2)Cu(3)O(7-delta), an additional subpicosecond component related to pseudogap correlations. The temperature-dependent amplitudes of both contributions correlate with the antiferromagnetic 41-millielectronvolt peak in neutron scattering, supporting the coupling between charges and spin excitations.  相似文献   

2.
A comprehensive inelastic neutron scattering study of magnetic excitations in the near optimally doped high-temperature superconductor YBa(2)Cu(3)O(6.85) is presented. The spin correlations in the normal state are commensurate with the crystal lattice, and the intensity is peaked around the wave vector characterizing the antiferromagnetic state of the insulating precursor, YBa(2)Cu(3)O(6). Profound modifications of the spin excitation spectrum appear abruptly below the superconducting transition temperature T(c), where a commensurate resonant mode and a set of weaker incommensurate peaks develop. The data are consistent with models that are based on an underlying two-dimensional Fermi surface, predicting a continuous, downward dispersion relation connecting the resonant mode and the incommensurate excitations. The magnetic incommensurability in the YBa(2)Cu(3)O(6+)(x) system is thus not simply related to that of another high-temperature superconductor, La(2-)(x)Sr(x)CuO(4), where incommensurate peaks persist well above T(c). The temperature-dependent incommensurability is difficult to reconcile with interpretations based on charge stripe formation in YBa(2)Cu(3)O(6+x) near optimum doping.  相似文献   

3.
Several spectroscopic methods were applied to study the characteristic properties of the electronic excitations in thin films of regioregular and regiorandom polythiophene polymers. In the regioregular polymers, which form two-dimensional lamellar structures, increased interchain coupling strongly influences the traditional one-dimensional electronic properties of the polymer chains. The photogenerated charge excitations (polarons) show two-dimensional delocalization that results in a relatively small polaronic energy, multiple absorption bands in the gap where the lowest energy band becomes dominant, and associated infrared active vibrations with reverse absorption bands caused by electron-vibration interferences. The relatively weak absorption bands of the delocalized polaron in the visible and near-infrared spectral ranges may help to achieve laser action in nanocrystalline polymer devices using current injection.  相似文献   

4.
An angle-resolved photoemission study is reported on Ca2CuO2Cl2, a parent compound of high-Tc superconductors. Analysis of the electron occupation probability, n(k), from the spectra shows a steep drop in spectral intensity across a contour that is close to the Fermi surface predicted by the band calculation. This analysis reveals a Fermi surface remnant, even though Ca2CuO2Cl2 is a Mott insulator. The lowest energy peak exhibits a dispersion with approximately the &cjs3539;coskxa - coskya&cjs3539; form along this remnant Fermi surface. Together with the data from Dy-doped Bi2Sr2CaCu2O8+delta, these results suggest that this d-wave-like dispersion of the insulator is the underlying reason for the pseudo gap in the underdoped regime.  相似文献   

5.
Magnetic neutron scattering provides evidence for nucleation of antiferromagnetic droplets around impurities in a doped nickel oxide-based quantum magnet. The undoped parent compound contains a spin liquid with a cooperative singlet ground state and a gap in the magnetic excitation spectrum. Calcium doping creates excitations below the gap with an incommensurate structure factor. We show that weakly interacting antiferromagnetic droplets with a central phase shift of pi and a size controlled by the correlation length of the quantum liquid can account for the data. The experiment provides a quantitative impression of the magnetic polarization cloud associated with holes in a doped transition metal oxide.  相似文献   

6.
The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.  相似文献   

7.
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.  相似文献   

8.
Electronic Raman scattering from high- and low-energy excitations was studied as a function of temperature, extent of hole doping, and energy of the incident photons in Bi2Sr2CaCu2O8+/-delta superconductors. For underdoped superconductors, short-range antiferromagnetic (AF) correlations were found to persist with hole doping, and doped single holes were found to be incoherent in the AF environment. Above the superconducting (SC) transition temperature Tc, the system exhibited a sharp Raman resonance of B1g symmetry and energy of 75 millielectron-volts and a pseudogap for electron-hole excitations below 75 millielectron-volts, a manifestation of a partially coherent state forming from doped incoherent quasi particles. The occupancy of the coherent state increases with cooling until phase ordering at Tc produces a global SC state.  相似文献   

9.
We consider trapped atomic Fermi gases with Feshbach-resonance enhanced interactions in pseudogap and superfluid temperatures. We calculate the spectrum of radio-frequency (or laser) excitations for transitions that transfer atoms out of the superfluid state. The spectrum displays the pairing gap and also the contribution of unpaired atoms, that is, in-gap excitations. The results support the conclusion that a superfluid, in which pairing is a manybody effect, was observed in recent experiments on radio-frequency spectroscopy of the pairing gap.  相似文献   

10.
The Born-Oppenheimer approximation of uncoupled electronic and nuclear motion is a standard tool of the computational chemist. However, its validity for molecule-metal surface reactions, which are important to heterogeneous catalysis, has been questioned because of the possibility of electron-hole pair excitations. We have performed experiments and calculations on the scattering of molecular hydrogen from a catalytically relevant metal surface, obtaining absolute probabilities for changes in the molecule's velocity parallel to the representative Pt(111) surface. The comparison for in-plane and out-of-plane scattering and results for dissociative chemisorption in the same system show that for hydrogen-metal systems, reaction and diffractive scattering can be accurately described using the Born-Oppenheimer approximation.  相似文献   

11.
Ground states of certain materials can support exotic excitations with a charge equal to a fraction of the fundamental electron charge. The condensation of these fractionalized particles has been predicted to drive unusual quantum phase transitions. Through numerical and theoretical analysis of a physical model of interacting lattice bosons, we establish the existence of such an exotic critical point, called XY*. We measure a highly nonclassical critical exponent η = 1.493 and construct a universal scaling function of winding number distributions that directly demonstrates the distinct topological sectors of an emergent Z(2) gauge field. The universal quantities used to establish this exotic transition can be used to detect other fractionalized quantum critical points in future model and material systems.  相似文献   

12.
The local effects of isolated magnetic adatoms on the electronic properties of the surface of a superconductor were studied with a low-temperature scanning tunneling microscope. Tunneling spectra obtained near magnetic adsorbates reveal the presence of excitations within the superconductor's energy gap that can be detected over a few atomic diameters around the impurity at the surface. These excitations are locally asymmetric with respect to tunneling of electrons and holes. A model calculation based on the Bogoliubov-de Gennes equations can be used to understand the details of the local tunneling spectra.  相似文献   

13.
The layer-structure cuprates with high superconducting transition temperatures T(c) exhibit a number of anomalous electronic properties in both superconducting and normal states. These anomalies are ascribed to the existence of independent spectra of excitations for charge and for spin, signaling a collective state, a "quantum protectorate."  相似文献   

14.
Mott transitions, which are metal-insulator transitions (MITs) driven by electron-electron interactions, are usually accompanied in bulk by structural phase transitions. In the layered perovskite Ca(1.9)Sr(0.1)RuO4, such a first-order Mott MIT occurs in the bulk at a temperature of 154 kelvin on cooling. In contrast, at the surface, an unusual inherent Mott MIT is observed at 130 kelvin, also on cooling but without a simultaneous lattice distortion. The broken translational symmetry at the surface causes a compressional stress that results in a 150% increase in the buckling of the Ca/Sr-O surface plane as compared to the bulk. The Ca/Sr ions are pulled toward the bulk, which stabilizes a phase more amenable to a Mott insulator ground state than does the bulk structure and also energetically prohibits the structural transition that accompanies the bulk MIT.  相似文献   

15.
在pH=2.8~4.0的BR缓冲溶液中,硫酸软骨素(CS)由于磺酸基离解而成为带多个负电荷的大阴离子,而低于其等电点(pI=4.7)的牛血清白蛋白(BSA)则以带正电荷的大阳离子存在,两者之间可结合形成复合物.此时将引起共振瑞利散射(RRS)显著增强,并产生新的RRS光谱,其最大散射波长位于304 nm处.与此同时,它的二级散射(SOS)和倍频散射(FDS)也明显增强,且最大SOS和FDS分别位于471 nm和292 nm.散射增强的强度(ΔIRRS、ΔISOS和ΔIFDS)与CS浓度在一定范围内成正比,可用于CS的定量测定.对于CS的检出限(3σ)分别为2.0 ng/mL(RRS),2.9 ng/mL(SOS)和13.2 ng/mL(FDS).研究了适宜的反应条件,考察了共存物质的影响,表明方法有较好的选择性,可用于市售滴眼液中硫酸软骨素含量的测定.  相似文献   

16.
An unresolved issue concerning cuprate superconductors is whether the distribution of carriers in the CuO2 plane is uniform or inhomogeneous. Because the carriers comprise a small fraction of the total charge density and may be rapidly fluctuating, modulations are difficult to detect directly. We demonstrate that in anomalous x-ray scattering at the oxygen K edge of the cuprates, the contribution of carriers to the scattering amplitude is selectively magnified 82 times. This enhances diffraction from the doped holes by more than 10(3), permitting direct structural analysis of the superconducting ground state. Scattering from thin films of La2CuO4+delta (superconducting transition temperature = 39 K) at temperature = 50 +/- 5 kelvin on the reciprocal space intervals (0,0,0.21) --> (0,0,1.21) and (0,0,0.6) --> (0.3,0,0.6) shows a rounding of the carrier density near the substrate suggestive of a depletion zone or similar effect. The structure factor for off-specular scattering was less than 3 x 10(-7) electrons, suggesting an absence of in-plane hole ordering in this material.  相似文献   

17.
Titanium dioxide (TiO2) has a number of uses in catalysis, photochemistry, and sensing that are linked to the reducibility of the oxide. Usually, bridging oxygen (Obr) vacancies are assumed to cause the Ti3d defect state in the band gap of rutile TiO2(110). From high-resolution scanning tunneling microscopy and photoelectron spectroscopy measurements, we propose that Ti interstitials in the near-surface region may be largely responsible for the defect state in the band gap. We argue that these donor-specific sites play a key role in and may dictate the ensuing surface chemistry, such as providing the electronic charge required for O2 adsorption and dissociation. Specifically, we identified a second O2 dissociation channel that occurs within the Ti troughs in addition to the O2 dissociation channel in O(br) vacancies. Comprehensive density functional theory calculations support these experimental observations.  相似文献   

18.
We describe a method for storing sequences of optical data pulses by converting them into long-lived acoustic excitations in an optical fiber through the process of stimulated Brillouin scattering. These stored pulses can be retrieved later, after a time interval limited by the lifetime of the acoustic excitation. In the experiment reported here, smooth 2-nanosecond-long pulses are stored for up to 12 nanoseconds with good readout efficiency: 29% at 4-nanosecond storage time and 2% at 12 nanoseconds. This method thus can potentially store data packets that are many bits long. It can be implemented at any wavelength where the fiber is transparent and can be incorporated into existing telecommunication networks because it operates using only commercially available components at room temperature.  相似文献   

19.
In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.  相似文献   

20.
Synchrotron surface x-ray scattering (SXS) studies have been carried out at the Au(lll)/electrolyte interface to determine the influence of surface charge on the microscopic arrangement of gold surface atoms. At the electrochemical interface, the surface charge density can be continuously varied by controlling the applied potential. The top layer of gold atoms undergoes a reversible phase transition between the (1 x 1) bulk termination and a (23 x radical3) reconstructed phase on changing the electrode potential. In order to differentiate the respective roles of surface charge and adsorbates, studies were carried out in 0.1 M NaF, NaCl, and NaBr solutions. The phase transition occurs at an induced surface charge density of 0.07 +/- 0.02 electron per atom in all three solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号