首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
树突状细胞(dendritic cells,DC)是目前已知机体内功能最强的抗原递呈细胞,也是惟一能启动初始T细胞介导免疫反应的一类细胞。论文综述了多糖对DC功能的影响,多糖能够刺激DC分裂增殖,同时能够显著地诱导DC成熟,能够有效增强DC表面分子表达与增强细胞因子分泌的能力,从而促进DC的抗原递呈能力。  相似文献   

2.
肿瘤的发生、发展和治疗与机体免疫系统功能密切相关,伴随着肿瘤抗原、抗原递呈、T细胞识别机制的突破性研究进展,研究者发现抗肿瘤多肽疫苗能够通过肿瘤抗原多肽识别抗原递呈细胞表面的主要组织相容性复合体(MHC)分子,形成肽-MHC-T细胞受体复合物,引起相应的细胞毒性T淋巴细胞免疫反应,从而杀伤肿瘤。因此,研制既能打破肿瘤患者存在的免疫耐受又能诱发针对肿瘤相关抗原特异性免疫应答的高效多肽疫苗已成为肿瘤免疫治疗研究的热点。论文综述了肿瘤多肽疫苗抗肿瘤相关机制及其在该领域所取得的最新临床研究进展。  相似文献   

3.
树突状细胞 ( Dendritic cell,DC)是抗原递呈细胞 ( APC)的一种 ,它可以将抗原物质递呈给 TH细胞。树突状细胞在机体的免疫应答中发挥着重要的作用[2 ] 。最近的研究表明 ,树突状细胞可以递呈肿瘤抗原 ,提高肿瘤病人的免疫能力 [8] 。还有研究表明 ,树突状细胞可以携带 HIV- I,并递呈给抗原反应性 T细胞 ,还可以诱导广泛的淋巴细胞死亡[10 ] 。因此 ,对树突状细胞的研究 ,对基础医学和临床治疗都具有重要意义。树突状细胞的特征是具有树突状外形 ,突起的长度、粗细、数量因不同的树突状细胞而有所不同[1] 。DC起源于骨髓干细胞 ,血液…  相似文献   

4.
树突状细胞(dendritic cell,DC)是重要的抗原递呈细胞,本研究发现通过口蹄疫病毒(foot and mouth diseasevir US,FMDV)感染DC细胞后可以有效感染小鼠骨髓来源DC,而且在感染后48h,FMDV对未成熟DC(imDC)的感染能力稍高于成熟DC(mDC).  相似文献   

5.
抗原-抗体复合物疫苗是由特异性高免血清按照恰当的比例与抗原混合而制成。免疫复合物疫苗能够增强抗原递呈细胞的递呈能力,能有效的提高机体的免疫能力。近年来国内外研究者做了大量的相关研究,在鸡新城疫和传染性法氏囊病等禽病的复合物疫苗研究中取得了一定成果,在乙型肝炎复合物疫苗研究中取得了突破性的进展,为病毒性疾病的防控开辟了一条新的途径。论文就免疫复合物疫苗研究方面的优点、作用机制及应用前景进行了综述。  相似文献   

6.
树突状细胞(DC)是目前发现功能最强的一类抗原递呈细胞(APC),因其在机体免疫应答及免疫功能发挥中担当重要角色,成为免疫学研究热点。多糖是中药黄芪的重要有效成分,由己糖醛酸、果糖、阿拉伯糖、半乳糖醛酸等组成,具有免疫调节、抗肿瘤、抗应激和抗氧化等作用。黄芪多糖的免疫调节一直是人们研究的重点,研究发现其可通过促进DC成熟而发挥免疫调节作用。论文从DC的形态和功能变化、DC的成熟和DC表面标志CD80、CD86、CD83和相关细胞因子表达等方面,综合分析了黄芪多糖对DC抗原递呈能力的影响。  相似文献   

7.
DNA疫苗又称DNA免疫、核酸免疫和基因免疫等.它是指将编码抗原的基因以重组表达载体的形式经各种基因转移途径转入机体细胞,借用宿主细胞的表达加工机构合成抗原分子,以MHC-Ⅰ和/或MHC-Ⅱ类分子抗原处理和输送途径将抗原递呈给T淋巴细胞,从而激发体液免疫和细胞免疫.  相似文献   

8.
主要组织相容性复合体I(MHC-I)、CD1限制性CD8 T淋巴细胞具有抗结核杆菌免疫保护作用,但是它的抗原递呈分子机理仍然不清楚。本试验结果证明结核杆菌吞噬体在以MHC-I参与的免疫途径中隐蔽于胞浆中,结核杆菌感染细胞失去抗原递呈能力。此试验也证明结核杆菌诱导感染的巨噬细胞凋亡,并释放凋亡囊泡,凋亡囊泡携带抗原递呈给未感染的抗原递呈细胞(APCs)。阻断细胞凋亡则减少抗原递呈给树突状细胞和CD8 T细胞。在以MHC-I和CD-1b参与的抗原递呈途径中,未感染的树突状细胞吞噬细胞外囊泡是必不可少的环节。在结核杆菌感染诱导细胞凋亡过程中,这条递呈吞噬体中的抗原递呈补救途径无论是对结核杆菌蛋白抗原还是糖脂抗原都具有重要的意义。  相似文献   

9.
IL-10对感染口蹄疫病毒的树突状细胞的影响   总被引:1,自引:1,他引:0  
树突状细胞(dendritic cells,DC)是机体中重要的抗原递呈细胞,在病毒感染机体后的免疫调节过程中具有重要作用。为研究调节IL-10的分泌是否会影响DC感染病毒后的免疫反应,本研究用FMDV感染DC后发现,IL-10的分泌量可以影响DC在免疫过程中各种细胞因子的表达,故认为IL-10在口蹄疫病毒感染过程中对机体的免疫调节具有重要的影响。  相似文献   

10.
细菌载体技术研究进展   总被引:1,自引:0,他引:1  
随着重组DNA 技术的发展和应用,基因工程疫苗的研究取得了快速的进展.其中,最有发展前景的研究领域之一是以细菌为活载体的疫苗,即将所需的编码病原菌特异性抗原的DNA 片段插入减毒的病原菌或者共生菌中,以递呈表达所编码的抗原,以期达到预防一种或多种疾病的作用.细菌载体疫苗是新型疫苗的重要发展方向,文章主要对卡介苗、志贺菌和乳酸杆菌等细菌载体疫苗加以介绍.  相似文献   

11.
Introduction: Cell‐based vaccine strategies using dendritic cells as cellular adjuvant have entered phase III trials in humans and have been found to be safe, feasible, and potentially efficacious. Canine patients are generally smaller than adult human patients, which makes production of canine dendritic cell (DC) vaccines problematic, given patient size and the small number of available DC precursors. Here we describe feasibility studies of a novel cell‐based vaccine strategy which uses CD40‐activated B‐cells (CD40‐B) loaded with RNA. This strategy is based on our observations that RNA‐transfected human CD40‐B can drive anti‐tumor T cell responses. One advantage of using CD40‐B cells is the ability to expand this cell population ex vivo, allowing for the numbers of cells required for therapeutic vaccines. Methods: Twenty milliliters of blood were drawn from 6 normal dogs and 5 canine lymphoma patients. Peripheral blood mononuclear cells were separated by Ficoll centrifugation. Culture conditions for B cell activation were optimized using CD40‐ligand, canine IL‐4, and Toll‐like receptor stimulus with CpGoligodinucleotides (ODN). Cyclosporine was added to eliminate peripheral T lymphocytes. Proliferation and activation of CD40‐B cells were demonstrated by CFSE dilution of B cells quantified by flow cytometry. Gene transfer was achieved by mRNA electroporation. Results: Marked in vitro stimulation and proliferation of canine peripheral B cells were achieved with soluble trimeric CD40L, canine IL‐4, and ODN. CD40‐B cells showed dramatic upregulation of MHC class II molecules and CD21 (B‐cell activation marker). After two weeks in culture, cells were negative for CD3 and CD4. Canine CD40‐B cells were efficiently transfected with mRNA, with >60% of CD40‐B expressing green fluorescent protein after GFP mRNA electroporation. Conclusion: RNA‐transfected CD40‐B cells can be efficiently generated from normal and tumor‐bearing dogs. These results provide rationale to test tumor RNA‐transfected CD40‐B as a novel therapeutic approach to treating canine malignancies. Clinical trials in canine lymphoma have been proposed.  相似文献   

12.
The in vitro generation of dendritic cells (DCs) from either blood or bone marrow has been accomplished for humans and a number of other species. This ability has facilitated the opportunity to test the efficacy of DC vaccines in various tumor models. The cottontail rabbit papillomavirus (CRPV) model is the most clinically relevant animal model for human papillomavirus (HPV)-associated carcinogenesis. The CRPV model has been used to test various preventative and therapeutic vaccination strategies, and the availability of rabbit DCs would further expand its utility. However, to date, rabbit DCs have not been phenotypically and/or functionally characterized. Here we show that DCs can be generated in vitro from rabbit bone marrow mononuclear cells (BMMCs) cultured in the presence of the human cytokines GM-CSF and IL-4 and matured with lipopolysaccharide (LPS). These cells show upregulation of MHC class II and CD86, as well as downregulation of CD14, do not have non-specific esterase activity, are able to perform receptor-mediated endocytosis, and are potent stimulators of allogeneic T cell proliferation in mixed lymphocyte reactions. The ability to generate rabbit DCs makes it possible to test the efficacy of DC vaccination in the prevention and treatment of CRPV-induced lesions, which may provide useful preclinical data regarding the use of DC vaccines for HPV-associated lesions, including cervical cancer.  相似文献   

13.
Dendritic cells: a specialized complex system of antigen presenting cells   总被引:1,自引:0,他引:1  
The dendritic cell (DC) network is a specialized system for presenting antigen to naive or quiescent T cells, and consequently plays a central role in the induction of T cell and B cell immunity in vivo. Despite considerable achievements in the last ten years, in our understanding of how DC induce and regulate immune responses, much remains to be learned about this complex system of cells. The history and current status of DC termed "directors of the immune system orchestra" is reviewed. The present understanding of DC cell biology, function and use, taking into account their complexity is discussed.  相似文献   

14.
Canine malignant melanoma (CMM) is a common and aggressive form of cancer in dogs. Established therapeutic approaches such as surgery, chemotherapy, and radiation therapy (RT) have not proven curative. As a coadjuvant of RT and to enhance the antimelanoma immune response, we characterized dendritic cells (DCs) from the bone marrow (BM) of dogs with CMM, ex vivo, for use in therapeutic vaccines. BM mononuclear cells from 3 dogs with melanoma and from 1 healthy dog were cultured for 12 days in media supplemented with recombinant human granulocyte-macrophage colony stimulating factor, stem cell factor, tumor necrosis factor, and Flt-3 ligand. On day 11, DCs were transduced with an adenovirus vector encoding a xenoantigen, human melanoma antigen gp100. Each dog received 3 subcutaneous vaccinations over a 4-month period. Phenotypic analysis of the expanded DC population demonstrated expression of CD11c/CD18 and major histocompatibility complex class II surface markers, and ultrastructural features characteristic of DCs were observed on electron microscopy. On functional analysis, these DCs were able to stimulate allo-reactivity and capture and express gp100. One dog demonstrated antigen-specific cytotoxic T lymphocyte (CTL) activity in peripheral blood lymphocytes. This dog has displayed no clinical signs, either locally or systemically, of recurrent melanoma 48 months after initial DC injection. However, another dog, which was CTL negative, relapsed 22 months after vaccination. Ex vivo DC expansion is feasible for immunotherapy of spontaneous cancers in outbred dogs.  相似文献   

15.
Inoculation of plasmid DNA, encoding an immunogenic protein gene of an infectious agent, stands out as a novel approach for developing new generation vaccines for prevention of infectious diseases of animals. The potential of DNA vaccines to act in presence of maternal antibodies, its stability and cost effectiveness and the non-requirement of cold chain have heightened the prospects. Even though great strides have been made in nucleic acid vaccination, still there are many areas that need further research for its wholesome practical implementation. Major areas of concern are vaccine delivery, designing of suitable vectors and cytotoxic T cell responses. Also, the induction of immune responses by DNA vaccines is inconclusive due to the lack of knowledge regarding the concentration of the protein expressed in vivo. Alternative delivery systems having higher transfection efficiency and the use of cytokines, as immunomodulators, needs to be further explored. Recently, efforts are being made to modulate and prolong the active life of dendritic cells, in order to make antigen presentation a more efficacious one. For combating diseases like acquired immunodeficiency syndrome (AIDS), influenza, malaria and tuberculosis in humans; and foot and mouth disease, Aujesky’s disease, swine fever, rabies, canine distemper and brucellosis in animals, DNA vaccine clinical trials are underway. This review highlights the salient features of DNA vaccines, and measures to enhance their efficacy so as to devise an effective and novel vaccination strategy against animal diseases.  相似文献   

16.
The accessory activity was reported in murine peritoneal cavity macrophage derived dendritic cells (PEC-DC) in a mixed lymphocyte reaction (MLR). Here we continue the characterization of the generated PEC-DC using the criteria of morphology, phenotype and other accessory function. We have demonstrated that murine peritoneal cavity macrophages can be induced to differentiate in vitro into cells exhibiting typical dendritic cell (DC) morphology, phenotype and function. The proliferative capacity of the progenitors was amplified in the first step of the culture (day 0-7) using a combination of early cytokines: interleukin 4 and granulocyte-macrophage colony-stimulating factor. The second step of the culture started at day 7 with the removal of early growth factors to allow differentiation and final maturation of DC during 2 days of culture with interferon gamma plus either Toxoplasma lysate antigen (TLA) or lipopolysaccharide (LPS), a bacterial agent as a DC maturing agent. The resulting DC population exhibited typical DC morphology and expressed higher levels of MHC class II and the co-stimulatory molecules CD80 and CD86 compared to the untreated peritoneal cells. The generated DC cells efficiently presented soluble protein antigen to CD3(+) spleen T cells.  相似文献   

17.
Currently most dendritic cells (DC) for in vitro study are generated from bone marrow or peripheral blood by culture in high concentrations of GM-CSF and other cytokines. However, in mice it is also possible to generate DC from spleen cells using long-term stromal cell cultures. To determine whether tissue DC could be also be generated from cats, we established stromal cell cultures from a number of different tissues of newborn cats. We found that stromal cell cultures from spleen, lung, liver, kidney, brain, and lymph node tissues were all capable of spontaneously generating DC over long periods of time (months), without requiring the addition of exogenous cytokines. The tissue DC generated from these stromal cell cultures could be readily isolated at high purity by simple mechanical detachment. The feline tissue DC expressed high levels of CD11c, CD11b, and MHC Class II and variable levels of CD80 and CD14 and exhibited high levels of spontaneous macropinocytosis. Moreover, DC from spleen stromal cell cultures, but not DC from lung or liver stromal cell cultures, stimulated mixed-lymphocyte reactions. The DC generated from the stromal cell cultures were relatively independent of GM-CSF for survival and proliferation, indicative of a dependence on other growth factors produced by the stromal cells. These results suggest that tissues of young cats contain a population of resident DC progenitor cells that under appropriate conditions are capable of spontaneous proliferation and generation of immature DC.  相似文献   

18.
Antigen presenting cells in mucosal sites of veterinary species   总被引:1,自引:0,他引:1  
The ability of antigen presenting cells, in particular dendritic cells, to integrate a variety of environmental signals, together with their ability to respond appropriately by initiating either tolerance or defensive immune responses make them cells of particular relevance and importance in the mucosal environment. They have been demonstrated in a variety of mucosal tissues in veterinary species and have been characterized to varying degrees, showing that fundamental immunological principles apply throughout all species, but also highlighting some species differences. A major advantage of carrying out immunological research in veterinary species is their size: it is possible to cannulate lymphatic ducts and obtain information about cell migration between different tissues. It is also possible to obtain pure populations of relatively rare cell types such as the plasmacytoid dendritic cells or mucosal dendritic cells ex vivo for the study of immune responses to diseases in their natural host and for other thorough functional studies. Two major myeloid antigen presenting cell (APC) (dendritic cells, DC) cell populations have been described in gut draining lymph and other mucosal sites in ruminants and pigs, characterised by the presence or absence of surface molecules, their enzyme profiles, their ability to phagocytose and their different potential as APC. There is evidence that one of these subsets has migrated from the diffuse mucosal tissue, where it is found as a phagocytic as well as stimulatory APC population, which in turn may be derived from blood macrophages. In addition, the presence and role in viral infection of the IFN-alpha producing plasmacytoid DC in mucosal tissue is discussed, based on studies in pigs.  相似文献   

19.
Early interactions of innate immune cell populations, such as dendritic cells (DC) and natural killer (NK) cells, can affect the ability of the acquired immune response to control infection of intracellular microorganisms. In this study, we investigated the activation of bovine NK cells by CD13(+) splenic DC stimulated with either Mycobacterium bovis BCG or Babesia bovis merozoites. Splenic DC were used either immediately after selection (cytokine(-)) or after exposure to GM-CSF, IL-4 and Flt3L for 72 h (cytokine(+)). Phenotypic analyses showed up-regulation of MHCII, CD80 and CD86 on cytokine(+) DC when compared to cytokine(-) DC. Purified NK cells (CD335(+)CD3(-)CD2(+/-)CD8alpha(+/-)) were co-cultured with microbial-exposed cytokine(-) DC or cytokine(+) DC in either transwell or cell-to-cell format and NK cell IFN-gamma production and cytotoxicity were assessed. NK cell IFN-gamma production was dependent on cell-to-cell contact. Microbial-stimulated cytokine(+) DC induced significantly more IFN-gamma production from NK cells than cytokine(-) cells. In contrast, cytotoxicity and perforin up-regulation were more pronounced in NK cells cultured with cytokine(-) DC than cytokine(+) DC. Therefore, activation of bovine NK cells by microbial-stimulated CD13(+) splenic DC is influenced by the maturation state of the DC suggesting different roles for the splenic DC during disease-induced maturation.  相似文献   

20.
应用流式细胞术(FCM)检测旋毛虫感染后小鼠肠系膜淋巴结(MLN)中树突状细胞(DC)上甘露糖受体(MR)的影响。培养小鼠骨髓源树突状细胞(BMDC)并负载旋毛虫排泄/分泌抗原(ES抗原),FCM检测BMDC上MR的变化情况。结果显示,感染第7天MLN中DC表面MR出现下调,但在14 d后出现上调,差异显著(P0.05)。体外实验发现,BMDC负载ES抗原后MR出现下调,直到第48小时出现上调,差异显著(P0.05)。本研究证明旋毛虫感染后可以引起树突状细胞上MR的变化,表明MR可能是ES抗原的识别受体。这为研制旋毛虫树突状细胞疫苗提供了支持,并对寄生虫免疫逃避机制的研究提供了思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号