首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The effects of nitrogen (N) forms (ammonium- or nitrate-N) on plant growth under salinity stress [150 mmol sodium chloride (NaCl)] were studied in hydroponically cultured cotton. Net fluxes of sodium (Na+), ammonium (NH4+), and nitrate (NO3?) were also determined using the Non-Invasive Micro-Test Technology. Plant growth was impaired under salinity stress, but nitrate-fed plants were less sensitive to salinity than ammonium-fed plants due mainly to superior root growth by the nitrate-fed plants. The root length, root surface area, root volume, and root viability of seedlings treated with NO3-N were greater than those treated with NH4-N with or without salinity stress. Under salinity stress, the Na+ content of seedlings treated with NO3-N was lower than that in seedlings treated with NH4-N owing to higher root Na+ efflux. A lower net NO3? efflux was observed in roots of nitrate-fed plants relative to the net NH4+ efflux from roots of ammonium-fed plants. This resulted in much more nitrogen accumulation in different tissues, especially in leaves, thereby enhancing photosynthesis in nitrate-fed plants under salinity stress. Nitrate-N is superior to ammonium-N based on nitrogen uptake and cotton growth under salinity stress.  相似文献   

2.
钦绳武  刘芷宇 《土壤学报》1989,26(2):117-123
本文研究了不同形态氮肥施用后,氮素在作物根际的分布规律,及其与作物种类、土壤水分条件的关系.在淹水条件下的水稻根际土壤中,(NH4)2SO4和(NH2)2CO荨NH4+-N肥,其亏缺率随离根面距离增加呈指数相关的减小.而旱作条件下的玉米、大麦、黑麦草等作物根际NH4+-N肥料在离根面1-3毫米内存在相对累积,然后再出现亏缺梯度.试验证明,NH4+-N在旱作根际的相对累积,部分来源于根系分泌物.然而,NO3--N肥即使在淋失量较大的情况下,无论在淹水水稻还是旱作根际土壤中均未测出亏缺,仅存在累积.  相似文献   

3.
Root development responds not only to the quantity of inorganic nitrogen in the rhizosphere, but to its form, NH4+ or NO3?. Root growth of tomato showed a hyperbolic response to soil levels of inorganic nitrogen: very few roots were found in soil blocks depleted in inorganic nitrogen, roots proliferated as soils increased to 2 μg NH4+-N g?1 soil or 6 μg NO3?-N g?1 soil, and root growth declined in soils with the higher levels of inorganic nitrogen. High NH4+ concentrations inhibited root growth, but low concentrations promoted the development of an extensive, fine root system. Supply with NO3? as the sole nitrogen source led to a more compact root system. These differences in root morphology under NH4+ and NO3? nutrition may be mediated through pH. Rice and maize roots absorbed NH4+ most rapidly right at the apex and appeared to assimilate this NH4+ in the zone of elongation. During NH4+ assimilation, root cells must release protons, and the resulting acidification around the walls of cells in this region should stimulate root extension. By contrast, NO3? absorption reached a maximum in the maturation zone of rice and maize roots, and this NO3? was probably assimilated in more basal regions. Absorption of NO3? requires proton efflux, whereas NO3? assimilation requires proton influx. The net result under NO3? nutrition was only subtle shifts in rhizosphere pH that probably would not influence root elongation. The signal through which roots detect changes in rhizosphere NH4+ and NO3? levels is still obscure. It is proposed that a product of nitrogen metabolism such as nitric oxide serves as a signal.  相似文献   

4.
Root-induced changes in the rhizosphere may affect mineral nutrition of plants in various ways. Examples for this are changes in rhizosphere pH in response to the source of nitrogen (NH4-N versus NO3-N), and iron and phosphorus deficiency. These pH changes can readily be demonstrated by infiltration of the soil with agar containing a pH indicator. The rhizosphere pH may be as much as 2 units higher or lower than the pH of the bulk soil. Also along the roots distinct differences in rhizosphere pH exist. In response to iron deficiency most plant species in their apical root zones increase the rate of H+ net excretion (acidification), the reducing capacity, the rate of FeIII reduction and iron uptake. Also manganese reduction and uptake is increased several-fold, leading to high manganese concentrations in iron deficient plants. Low-molecular-weight root exudates may enhance mobilization of mineral nutrients in the rhizosphere. In response to iron deficiency, roots of grass species release non-proteinogenic amino acids (?phytosiderophores”?) which dissolve inorganic iron compounds by chelation of FeIII and also mediate the plasma membrane transport of this chelated iron into the roots. A particular mechanism of mobilization of phosphorus in the rhizosphere exists in white lupin (Lupinus albus L.). In this species, phosphorus deficiency induces the formation of so-called proteoid roots. In these root zones sparingly soluble iron and aluminium phosphates are mobilized by the exudation of chelating substances (probably citrate), net excretion of H+ and increase in the reducing capacity. In mixed culture with white lupin, phosphorus uptake per unit root length of wheat (Triticum aestivum L.) plants from a soil low in available P is increased, indicating that wheat can take up phosphorus mobilized in the proteoid root zones of lupin. At the rhizoplane and in the root (root homogenates) of several plant species grown in different soils, of the total number of bacteria less than 1 % are N2-fixing (diazotrophe) bacteria, mainly Enterobacter and Klebsiella. The proportion of the diazotroph bacteria is higher in the rhizosphere soil. This discrimination of diazotroph bacteria in the rhizosphere is increased with foliar application of combined nitrogen. Inoculation with the diazotroph bacteria Azospirillum increases root length and enhances formation of lateral roots and root hairs similarly as does application of auxin (IAA). Thus rhizosphere bacteria such as Azospirillum may affect mineral nutrition and plant growth indirectly rather than by supply of nitrogen.  相似文献   

5.
Reductive dissolution of soil manganese (Mn) oxides increases potential toxicity of Mn2+ to plants. In order to examine the effect of nitrogen forms on reduction of Mn oxides in rhizosphere soil, a rhizobox experiment was employed to investigate the reduction of Mn oxides due to the growth of soybean and maize in an Oxisol with various contents of NO3-N and NH4+-N and a total N of 200 mg kg?1. The results showed that exchangeable Mn2+ in rhizosphere soil was 9.6–32.7 mg kg?1 higher than that in bulk soil after cultivation of soybean and maize for 80 days, which suggested that plant root exudates increased reduction of soil Mn oxides. Application of ammonium-N promoted reduction of Mn oxides in rhizosphere soil compared to application of nitrate and nitrate together with ammonium. Soybean cultivation led to a higher reduction in soil Mn oxides than maize cultivation. Application of single ammonium enhanced Mn uptake by the plants and led to more Mn accumulating in plant leaves, especially for soybean. Therefore, application of ammonium-based fertilizer can promote reduction of soil Mn oxides, while application of nitrate-based fertilizer can inhibit reduction of soil Mn oxides and thus reduce Mn2+ toxicity to plants.  相似文献   

6.
We investigated the interacting effects of inorganic nitrogen and the main inorganic phosphorus form in dairy manure (dicalcium phosphate, CaHPO4) on growth, nutrient uptake, and rhizosphere pH of young maize plants. In a pot experiment, three levels of CaHPO4 (0, 167, and 500 mg P pot?1) were combined with nitrogen (637 mg N pot?1) applied at five NH4‐N : NO3‐N ratios (0 : 100, 25 : 75, 50 : 50, 75 : 25, and 100 : 0) and a nitrification inhibitor in a concentrated layer of a typical acid sandy soil from Denmark. 15N‐labeled NH4‐N was applied to differentiate the role of nitrification and to partition nitrogen uptake derived from NH4‐N. Among treatments including nitrogen, shoot biomass, rooting and phosphorus uptake were significantly higher at the five‐leaf stage when CaHPO4 was applied with NH4‐N : NO3‐N ratios of 50 : 50 and 75 : 25. In these treatments, rhizosphere pH dropped significantly in direct proportion with NH4‐N uptake. The fertilizers in the concentrated layer had a root‐inhibiting effect in treatments without phosphorus supply and in treatments with pure NO3‐N or NH4‐N supply. Increased nitrogen uptake as NH4‐N instead of NO3‐N reduced rhizosphere pH and enhanced acquisition of applied CaHPO4 by young maize plants, which may have positive implications for the enhanced utilization of manure phosphorus.  相似文献   

7.
Abstract

Nitrogen is the most important nutrient for plant growth. In the present study, investigations were carried out on the effects of sodium nitrate, ammonium sulfate, urea, and two types of controlled-release coated urea (LP-40 and LP-70) fertilizers on the NO3 ?-N, NH4 +-N concentrations, and microbial numbers as well as pH distribution across the rhizosphere of soybean (Glycine max L. Merrill, var. Heinong 35). The study was conducted on a typical black soil using a rhizobox system. The results showed that NO3 ?-N was the main source of nitrogen, which was deficient in the rhizosphere in the treatments of ammonium sulfate, urea, LP-40, and LP-70, but accumulated considerably in the sodium nitrate treatment. The NH4 +-N concentration slightly increased in the rhizosphere in the ammonium sulfate treatment, and decreased in the rhizosphere when the other four kinds of N fertilizers were supplied. In an the treatments, bacterial and fungal numbers were highest in the central compartment (C.C.) of the rhizoboxes where the soybean root system was confined, but the rhizosphere width estimated from the increase in the microbial abundance differed among different N fertilizers. The experimental results also indicated that the fungal composition in the C.C. was less diverse than in other parts of the rhizobox compartments, and that the majority of fungal groups was represented by Penicillium spp., suggesting that the microbial distribution across the soybean rhizosphere differed both quantitatively and qualitatively.  相似文献   

8.
Ammonium salts used as fertilizers may cause soil acidification by two different processes: nitrification in soil and net release of protons from roots. Their influence on soil pH may vary depending on the distance from root surface. The aim of this study was to distinguish between these two processes. For this purpose rape seedlings were grown 10 d in a system which separated roots from soil by a fine-meshed screen. As a function of distance from the plane root layer formed on the screen, pH, titratable and exchangeable acidity and NO3- and NH4-nitrogen were determined. The soil, a luvisol from loess, was supplied with no N or (NH4)2SO4 either with or without a nitrification inhibitor (DCD). The bulk soil pH remained unaffected when no N or 400 mg NH4? N kg?1 soil plus DCD was applied but it decreased from 6.6 to 5.8 without DCD. In contrast, rhizosphere pH decreased in all cases, mainly within a distance of 1 mm from the root plane only, but with gradients extending to between 2 and 4 mm into the soil. The strongest pH decrease, from 6.6 to 4.9, occurred at the root surface of plants treated with both NH4-N and DCD where most of the mineral N remained as ammonium. In this case Al was solubilized in the rhizosphere as indicated by exchangeable acidity. Total soil acidity produced in the NH4 treatment without DCD was mainly derived from nitrification compared to root released protons. However, acidification of the rhizosphere was diminished by nitrification because nitrate ions taken up by the roots counteracted net proton release. It is concluded that nitrification inhibitors may reduce proton input from ammonium fertilizers but enhance acidification at the soil-root interface which may cause Al toxicity to plants.  相似文献   

9.
Influence of ammonium and nitrate nitrogen on the growth of young beech plants Young beech plants were grown in aerated nutrient solutions with NH4 or NO3 nitrogen for a period of 12 weeks. pH-changes caused by the source of nitrogen were corrected every second day. Absorption of NH4-N was higher than of NO3-N. NH4-N was superior for shoot growth and development of lateral roots, NO3-N for growth of the main root. Nutrient solution containing both sources of nitrogen was the most favorable.  相似文献   

10.
Abstract

In view of the unreasonable application of chemical fertilizers in agriculture and the groundwater pollution caused by nitrogen (N) leaching, a nitrogen dynamic hydroponic culture was used to simulate the dynamics variation of ammonium nitrogen (NH4-N) and nitrate nitrogen (NO3-N) in the leaching loss soil. Solutions with different ratio of NO3-N and NH4-N (100:0, 70:30, 50:50, 30:70 and 0:100) were prepared as well as the same solutions that not containing NO3-N .Water spinach was chosen to culture in the two solutions that differ from NO3-N every two (E2) or five days (E5) to observe the growth, quality and nutrient solution uptake. In terms of the growth, uptake of N source, N use efficiency and the chemical indicators, plants grown in the balanced solution all showed the best results. The nitrogen dynamic hydroponic culture showed some differences between E2 and E5 in some aspects. Under the same N source level, plants in E2 showed a better growth and higher NO3-N uptake than E5. On the other hand, the uptake of NH4-N seemed to be affected significantly by the interchanged frequency, which showed the same variations of glutamine synthetase activity. The activity of nitrate reductase and glutamine synthetase showed the coexist of NO3-N and NH4-N could play synergistic effect. It is not recommended to supplement NO3-N frequently in the case of N leaching loss, which has little impact on the growth and may lead to the hard taste and groundwater pollution.  相似文献   

11.
Abstract

In a pot experiment, the effects of NO3‐N and NH4‐N fertilizer were examined on the pH of the bulk soil and rhizosphere, and on the growth and nutrient uptake of 18–35‐d old bean plants (Phaseolus vulgaris L.) supplied with KH2PO4 or rock phosphate (Hyperphos). Prior to sowing, the soil was incubated for 16 d to ensure complete nitrification of NH4‐N which decreased bulk soil pH from 6.8 to 5.5. In other pots, a nitrification inhibitor, N‐Serve, was added together with the ammonium fertilizer and after 18 d growth, the pH of the bulk soil was 6.6 while the pH of the rhizosphere decreased to 4.5. Shoot and root dry matter yield was significally greater for plants supplied with KH2PO4 and fertilized with NH4‐N compared with NO3‐N. This increased growth by NH4‐N fed plants was presumably due to a increased nutrient availability caused by the acidification of the bulk soil. Shoot concentrations of ? and micronutrients, such as Fe, Mn, Zn, and Cu, were higher for plants supplied with NH4‐N, and more strikingly were higher for plats supplied with NH4‐N+N‐Serve when expressed on a root length basis. In this latter case, the increased nutrient acquisition by plants could only be due to acidification of the rhizopshere. The inhibitory effect of NH4‐N+N‐Serve, particularly on root growth, was not caused by NH4+ toxicity, but was due to a direct effect of N‐Serve as shown by growth comparisons with another nitrification inhibitor, dicyanodiamide (DCD).  相似文献   

12.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

13.
Subsoil acidity restricts root growth and reduces crop yields in many parts of the world. More than half of the fertilizer nitrogen(N) applied in crop production is currently lost to the environment. This study aimed to investigate the effect of gypsum application on the efficiency of N fertilizer in no-till corn(Zea mays L.) production in southern Brazil. A field experiment examined the effects of surface-applied gypsum(0, 5, 10, and 15 Mg ha~(-1)) and top-dressed ammonium nitrate(NH_4NO_3)(60, 120, and 180 kg N ha~(-1)) on corn root length, N uptake, and grain yield. A greenhouse experiment was conducted using undisturbed soil columns collected from the field experiment site to evaluate NO_3-N leaching, N uptake, and root length with surface-applied gypsum(0 and 10 Mg ha~(-1)) and top-dressed NH_4NO_3(0 and 180 kg N ha~(-1)). Amelioration of subsoil acidity due to gypsum application increased corn root growth,N uptake, grain yield, and N use efficiency. Applying gypsum to the soil surface increased corn grain yield by 19%–38% and partial factor productivity of N(PFPN) by 27%–38%, depending on the N application rate. Results of the undisturbed soil column greenhouse experiment showed that improvement of N use efficiency by gypsum application was due to the higher N uptake from NO_3-N in the subsoil as a result of increased corn root length. Our results suggest that ameliorating subsoil acidity with gypsum in a no-till corn system could increase N use efficiency, improve grain yield, and reduce environmental risks due to NO_3-N leaching.  相似文献   

14.
《Applied soil ecology》2011,47(3):341-346
We examined acid phosphatase activity (APA), N mineralization and nitrification rates, available N and P, and microbial biomass C, N and P in rhizosphere and bulk soils of 18-year-old Siberian elm (Ulmus pumila), Simon poplar (Populus simonii) and Mongolian pine (Pinus sylvestris var. mongolica) plantations on a nutrient-poor sandy soil in Northeast China. The main objective was to compare the rhizosphere effects of different tree species on N and P cycling under nutrient-deficient conditions. All tree species had the similar pattern but considerably different magnitude of rhizosphere effects. The APA, potential net N mineralization and nitrification rates increased significantly (by 27–60%, 110–188% and 106–142% respectively across the three species) in rhizosphere soil compared to bulk soil. This led to significantly higher Olsen-P and NH4+-N concentrations in rhizosphere soil, whereas NO3-N concentration was significantly lower in rhizosphere soil owing to increased microbial immobilization and root uptake. Microbial biomass C and N generally increased while microbial biomass P remained constant in rhizosphere soil relative to bulk soil, indicating the N-limited rather than P-limited microbial growth. Rhizosphere effects on P transformation were most pronounced for Siberian elm, while rhizosphere effects on N transformation were most pronounced for Mongolian pine, implying the different capacities of these species to acquire nutrients.  相似文献   

15.
研究苗期干旱胁迫下施氮对东北春玉米氮素吸收利用和土壤生物化学性质的影响,为区域玉米养分管理与逆境调控提供依据。研究设置水、氮二因素盆栽试验,土壤水分包括3个水平:田间持水量的30%(W0),50%(W1)和70%(W2);施氮量包括2个水平:不施氮(N0)和施氮0.24 g/kg(N1),测定不同水氮条件下玉米苗期的植株干重和氮素吸收、根际和非根际土壤的化学性质、微生物量碳、氮(MBC、MBN)及土壤酶活性。结果表明:干旱胁迫显著降低玉米苗期植株干重和氮素吸收量,其中W0条件降幅最大(分别为51.1%,43.8%)。施氮促进各水分条件下植株生长,且与水分存在显著交互作用,W2条件下施氮后植株干重和氮素吸收量的增幅最高(分别为53.7%,83.2%)。干旱胁迫提高植株的水分利用效率,但降低氮肥利用效率。施氮显著提高W2条件植株的水分利用效率,但干旱条件下则无显著影响。水、氮及其交互作用对土壤性质的影响较为复杂。总体上,苗期干旱胁迫暂时提高了根际和非根际土壤pH,显著增加根际土壤的铵态氮和硝态氮含量。MBC、MBN对干旱胁迫的响应在根际与非根际土壤之间存在相反趋势,根际土壤随干旱程度增加而提高,非根际土壤则随之下降。土壤酶活性方面,干旱胁迫显著影响根际土壤的硝酸还原酶和亚硝酸还原酶活性。施氮增加所有水分条件下根际和非根际土壤的pH和铵态氮、硝态氮含量,其中根际土壤的增幅高于非根际土壤。施氮显著增加各水分条件下根际和非根际土壤的MBC、MBN、脲酶和硝酸还原酶活性,但显著降低根际和非根际土壤亚硝酸还原酶活性。水氮交互作用显著影响根际土壤的亚硝酸还原酶、非根际土壤的脲酶、亚硝酸还原酶和FDA水解酶活性。根际、非根际土壤各生物化学性质之间均存在显著的相关关系,而且根际土壤除土壤亚硝酸还原酶外的各指标均与植株氮素吸收和氮肥利用效率呈正相关。苗期干旱显著抑制玉米植株生长和氮素吸收,并对土壤生物、化学性质造成显著影响。施氮对植株和土壤性质的影响在不同水分条件下存在差异,而且植株表现与土壤生物、化学性质之间存在显著相关关系。  相似文献   

16.
Aluminum (Al) plant tolerance has been frequently associated with a pH increase in the rhizosphere. The changes in pH are dependent on plant genotypes and ionic composition and strength of nutrient solutions. This work was performed in order to study in triticale (Triticosecale Wittm.) the association of pH change with nitrogen (N) uptake and growth performance in acid conditions. Three‐day‐old seedlings were treated with Al (185 μM) in solutions having different proportion nitrate/ammonium (NO3/NH4), 15/1 and 8/1, but the same total N content. Along the period with Al treatment, several measurements have been made: pH, every day; NO3 and NH4 uptake from the solution as well as shoot and root biomass production every two days (five and seven days of plant age). The maximum growth inhibition (30%) of fresh weight was found in roots of plants in the 15/1 (NO/NH,) nutrient solution. The presence of a higher proportion of NH4 (8/1 solution) had a protective effect on Al damage as shown by less growth inhibition and less reduction in NO3 uptake. Changes in pH apparently were not relevant for the tolerance. The results suggest that NH4 fertilization may be useful for alleviating Al toxicity in triticale.  相似文献   

17.
增硝营养对不同基因型水稻苗期氮素吸收同化的影响   总被引:21,自引:7,他引:21  
利用控制条件下的溶液培养方法,研究了增硝营养(NH4+∶NO3-比例为100∶0和50∶50)对4种不同的基因型水稻(常规籼稻、常规粳稻、杂交籼稻、杂交粳稻)苗期生长和氮素吸收同化的影响。结果表明,增NO3-营养可以增加水稻叶片的光合速率,促进水稻对氮素的吸收,提高氮素利用率,进而促进水稻生长;不同基因型水稻在增NO3-营养下氮积累量增幅不同主要是由于其生物量增幅不同,而整株氮素含量增幅差异不大;NO3-的存在可增强谷氨酰胺合成酶和硝酸还原酶的活力,促进水稻对NH4+和NO3-的同化利用,从而增加了氮素在植株地上部的积累同化;籼稻与粳稻相比,杂交粳稻与杂交籼稻相比,前者在氮素吸收利用上均表现出更为明显的优势。  相似文献   

18.
Abstract

Tobacco (Nicotiana tabacum L., cv. ‘Coker 319') plants were grown for 28 days in flowing nutrient culture containing either 1.0 mM NO3 or 1.0 mM NH4 + as the nitrogen source in a complete nutrient solution. Acidities of the solutions were controlled at pH 6.0 or 4.0 for each nitrogen source. Plants were sampled at intervals of 6 to 8 days for determination of dry matter and nitrogen accumulation. Specific rates of NO3 or NH4 + uptake (rate of uptake per unit root mass) were calculated from these data. Net photosynthetic rates per unit leaf area were measured on attached leaves by infrared gas analysis. When NO was the sole nitrogen source, root growth and nitrogen uptake rate were unaffected by pH of the solution, and photosynthetic activity of leaves and accumulation of dry matter and nitrogen in the whole plant were similar. When NH4 + was the nitrogen source, photosynthetic rate of leaves and accumulation of dry matter and nitrogen in the whole plant were not statistically different from NO3 ‐fed plants when acidity of the solution was controlled at pH 6.0. When acidity for NH4 + ‐fed plants was increased to pH 4.0, however, specific rate of NH4 + uptake decreased by about 50% within the first 6 days of treatment. The effect of acidity on root function was associated with a decreased rate of accumulation of nitrogen in shoots that was accompanied by a rapid cessation of leaf development between days 6 and 13. The decline in leaf growth rate of NH4 + ‐fed plants at pH 4.0 was followed by reductions in photosynthetic rate per unit leaf area. These responses of NH4 + ‐fed plants to increased root‐zone acidity are characteristic of the sequence of responses that occur during onset of nitrogen stress.  相似文献   

19.
Nitrogen nutrition and Al toxicity with young beech plants. I: Development of young beech plants in relation to the source of nitrogen and the Al content of the nutrient solution Young beech plants were grown in aerated nutrient solutions with different Al concentrations over a period of 14 weeks. Nitrogen was supplied in either NO3- or NH4-form. pH-changes of the solutions were either corrected to the initial pH of 4 after two days, or not corrected over a period of two weeks. Root growth of the beech seedlings was inhibited by Al. Reduction of root length and dry matter production was more severe if the plants were fed with ammonium nitrogen compared to nitrate nitrogen. Detrimental effect of Al on root growth was also influenced by the pH of the solution. NH4-N-nutrition led to pH decrease and therefore to increased solubility and toxicity of aluminium. On the contrary, NO3-N-nutrition weakened Al toxicity because of pH increase at the root surface and in the AFS. This led to an inactivation of Al in the form of insoluble hydroxy aluminium polymers. Compared to NO3-N-nutrition NH4-N promoted shoot growth. During 14 weeks no detrimental effect of Al on shoot growth was observed.  相似文献   

20.
The objective of this study was to test if the effects of different nitrogen forms on potato growth depend on the plant growth stage. Plants from different potato cultivars were treated with different forms of nitrogen before tuber initiation and after tuber formation. A nitrification inhibitor was used to prevent the transformation of ammonium (NH4+) to nitrate (NO3?). Plant growth, tuber formation, leaf area, leaf chlorophyll content, and tuber yield were assessed. The results obtained over 2 years indicate that plants treated with NO3-nitrogen (N) before or at tuber initiation produced more tubers per plant than those treated with NH4-N. However, plants treated with NH4-N develop tubers earlier. Additionally, after tuber formation, plants treated with NH4-N had better shoot growth than plants treated with NO3-N. A larger leaf area with higher leaf chlorophyll content resulted in greater dry matter accumulation and higher tuber yield at harvest for plants treated with NH4-N.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号