首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
增硝营养对不同基因型水稻苗期氮素吸收同化的影响   总被引:21,自引:7,他引:21  
利用控制条件下的溶液培养方法,研究了增硝营养(NH4+∶NO3-比例为100∶0和50∶50)对4种不同的基因型水稻(常规籼稻、常规粳稻、杂交籼稻、杂交粳稻)苗期生长和氮素吸收同化的影响。结果表明,增NO3-营养可以增加水稻叶片的光合速率,促进水稻对氮素的吸收,提高氮素利用率,进而促进水稻生长;不同基因型水稻在增NO3-营养下氮积累量增幅不同主要是由于其生物量增幅不同,而整株氮素含量增幅差异不大;NO3-的存在可增强谷氨酰胺合成酶和硝酸还原酶的活力,促进水稻对NH4+和NO3-的同化利用,从而增加了氮素在植株地上部的积累同化;籼稻与粳稻相比,杂交粳稻与杂交籼稻相比,前者在氮素吸收利用上均表现出更为明显的优势。  相似文献   

2.
采用溶液培养试验,研究了氮素不同形态配比对菠菜茎叶中游离氨基酸含量及3种主要氮代谢酶活性的影响。结果表明:1)随着营养液中铵硝比(NH4+-N/NO3--N)的降低,菠菜茎叶中游离氨基酸的总量呈下降趋势。在全硝营养下(NH4+-N/NO3--N=0∶100)下,菠菜茎叶中游离氨基酸的总量只有全铵营养(NH4+-N/NO3--N=100∶0)的34.4%。2)在全铵营养下,菠菜茎叶中游离氨基酸的主要组分是谷氨酰胺、精氨酸和谷氨酸,三者占游离氨基酸总量的百分比依次为39.8%、20.2%和8.9%;在全硝营养下,菠菜茎叶中游离氨基酸以谷氨酸、天冬氨酸和丝氨酸为主,三者占游离氨基酸总量的百分比分别为30.3%1、8.6%和8.5%。3)提高营养液中硝态氮的比例,可以显着提高菠菜茎叶中硝酸还原酶(NR)的活性,同时降低了谷氨酸脱氢酶(GDH)的活性,谷氨酰胺合成酶(GS)活性则呈现先升后降的抛物线状变化规律。4)菠菜茎叶中NR活性与谷胺酰胺含量之间存在着显著负相关关系(r=-0.968)。  相似文献   

3.
Plants can play an important role in wastewater treatment and water reuse in terrestrial and space systems. Chive growth in biologically treated graywater, simulating the anticipated early planetary base graywater, was evaluated in this study for NASA. Phytotoxicity due to physiochemical parameters such as ammonium-nitrogen (NH4 +-N), nitrite-nitrogen (NO2 ?-N), pH, and sodium (Na+) was assessed using a series of hydroponic experiments in an environmentally controlled growth chamber. Nitrification in wastewater was observed in all graywater treatments, which converted NO2 ?-N (a toxic form of nitrogen) and NH4 +-N (toxic at high concentrations) to nitrate-nitrogen (NO3 ?-N) (preferred N form for plant uptake). Irrespective of the increase in the NO3 -N concentration due to nitrification, chives in the wastewater treatments typically had poor or no growth. The high levels of Na+ present in the graywater treatments affected potassium uptake and may have affected other nutrient uptake. The impact of nitrification on wastewater pH and NO2 ?-N toxicity is believed to be the critical factor affecting chive growth and may hinder the use high nitrogen waste streams for plant growth unless NO2 ?-N concentrations are controlled during biological treatment of graywater.  相似文献   

4.
不同铵硝配比对弱光下白菜氮素吸收及相关酶的影响   总被引:2,自引:0,他引:2  
以黑色遮阳网覆盖模仿弱光环境, 使光照强度为自然光的20%左右, 以自然光照为对照, 采用精确控制水培溶液氮素营养, 研究NH4+-N/NO3--N 比例分别为0/100、25/75、50/50、75/25、100/0 对弱光下白菜氮代谢及硝酸还原酶和谷氨酰胺合成酶活性的影响。结果表明, 弱光下, 白菜的鲜重及叶片总氮量以NH4+-N/NO3--N 比为25/75 时最大, NH4+-N/NO3--N 比为100/0 时最低。随弱光处理的进行, 白菜叶片中硝酸还原酶活性及谷氨酰胺合成酶活性均呈下降趋势, 但NH4+-N/NO3--N 比为25/75 时, 可维持叶片内较高的硝酸还原酶活性及谷氨酰胺合成酶活性。试验表明, NH4+-N/NO3--N 比25/75 是白菜在弱光下生长的较适宜氮素形态配比。  相似文献   

5.
Plant growth, glutamine synthetase and glutamine dehydrogenase activities of two maize genotypes were compared in the presence of NH4 + and NO3 forms of N in sand culture. Ammonium reduced growth of the P3732 genotype 64% and the B73 x Mol7 hybrid 59% as compared to NO3 . Both glutamine synthetase and glutamate dehydrogenase activities in roots tended to be higher with NH4 as compared to NO3. As the pH in the medium was increased by adding CaCO3, glutamine synthetase and glutamate dehydrogenase activities in roots of both genotypes were reduced; however, glutamine synthetase activity in leaves of NH^‐treated plants increased at the higher pH of the growing medium.  相似文献   

6.
通过水培试验研究了不同铵硝比的氮素营养和磷素营养对菠菜生长、氮素吸收及硝酸还原酶活性(NRA)和谷氨酰胺合成酶活性(GSA)的影响。结果表明:在供磷水平相同时,菠菜的生物量随着铵硝比的降低而降低,但铵硝比为25:75与0:100两个处理之间没有显著差异;在铵硝比相同时,随着营养液中磷含量的增加,菠菜的生物量随之增加。菠菜茎叶中硝酸盐的含量随着铵硝比和磷水平的降低而升高。不同铵硝比处理,菠菜含氮量没有明显差异,随着磷水平的提高,菠菜植株含氮量有升高的趋势,但各处理之间差异不显著;受到生物量显著差异的影响,菠菜植株中氮素累积量随着铵硝比的降低和磷素水平的增加而增加。在铵硝混合营养条件下,缺磷会显著抑制菠菜对铵态氮和硝态氮的吸收,且磷索缺乏对菠菜吸收硝态氮的抑制作用要大于对铵态氮吸收的抑制作用。铵硝比相同时,随着营养液中磷索供应量的增加,菠菜茎叶中NRA显著增加;但是营养液中铵硝比较高时,会显著抑制菠菜茎叶中NRA,而铵硝比较低时,则有利于提高菠菜的NRA。缺磷会严重抑制GSA;在磷素水平相同时,随着营养液中铵比例的增加,菠菜茎叶中GSA显著增加。为此,在一些硝酸盐含量较高的土壤上栽培蔬菜时,可以采取增施适量磷肥的方法,以降低叶菜的硝酸盐含量。  相似文献   

7.
ABSTRACT

A study was carried out to determine the influence of nitrogen (N) sources on the growth, nitrate (NO3 ?) accumulation, and macronutrient concentrations of pakchoi (Brassica chinensis L.) in hydroponics. Plants were supplied with NO3 ? and two amino acids (AA), glutamic acid (Glu), and glutamine (Gln), at six NO3 ?-N/AA-N molar ratios: (1) 100:0, (2) 80:20, (3) 60:40, (4) 40:60, (5) 20:80, (6) 0:100. The total N concentration was 12.5 mmol/L for all treatments in nutrient solutions. Both AAs reduced plant growth with decreasing NO3 ?-N/AA-N ratios, but the reduction was for Gln than for Glu. At 80:20 NO3 ?-N: Gln-N ratio, the Gln had no significant effect on pakchoi fresh weights. Decreasing NO3 ?-N/AA-N ratios reduced NO3 ? concentrations in the plant, regardless of AA sources. Adding an appropriate portion of AA-N to nutrient solutions for hydroponic culture increased concentrations of N, phosphorus (P), and potassium (K) in pakchoi shoots. Substituting 20% or less of NO3 ?-N with Gln-N in hydroponic culture will increase the pakchoi quality by reducing NO3 ? concentration and increasing mineral nutrient concentrations in shoots without significant reduction of crop yields.  相似文献   

8.
Subsoil acidity restricts root growth and reduces crop yields in many parts of the world. More than half of the fertilizer nitrogen(N) applied in crop production is currently lost to the environment. This study aimed to investigate the effect of gypsum application on the efficiency of N fertilizer in no-till corn(Zea mays L.) production in southern Brazil. A field experiment examined the effects of surface-applied gypsum(0, 5, 10, and 15 Mg ha~(-1)) and top-dressed ammonium nitrate(NH_4NO_3)(60, 120, and 180 kg N ha~(-1)) on corn root length, N uptake, and grain yield. A greenhouse experiment was conducted using undisturbed soil columns collected from the field experiment site to evaluate NO_3-N leaching, N uptake, and root length with surface-applied gypsum(0 and 10 Mg ha~(-1)) and top-dressed NH_4NO_3(0 and 180 kg N ha~(-1)). Amelioration of subsoil acidity due to gypsum application increased corn root growth,N uptake, grain yield, and N use efficiency. Applying gypsum to the soil surface increased corn grain yield by 19%–38% and partial factor productivity of N(PFPN) by 27%–38%, depending on the N application rate. Results of the undisturbed soil column greenhouse experiment showed that improvement of N use efficiency by gypsum application was due to the higher N uptake from NO_3-N in the subsoil as a result of increased corn root length. Our results suggest that ameliorating subsoil acidity with gypsum in a no-till corn system could increase N use efficiency, improve grain yield, and reduce environmental risks due to NO_3-N leaching.  相似文献   

9.
稻田土壤中氮素淋失的研究   总被引:88,自引:3,他引:88  
本文应用稻田大型原状土柱渗漏计,研究了双季稻田土壤中氮素随渗漏水流淋失的形态、数量、季节性变化以及若干农化因子的影响。明确了稻田中氮素淋失的基本形态是硝态氮(NO3^--N),估算出双季稻田中氮素淋失总量可接近30kgN/ha,同时肯定了农田施用氮肥对地下水体环境可能的NO3^--N污染,建议双季稻田中每季水稻的氮肥用量宜控制在150kgN/ha;本文还证实氮肥用量对氮素淋失有明显影响,不同氮肥品  相似文献   

10.
日光温室土壤剖面矿质态氮的含量、累积及其分布特性   总被引:11,自引:0,他引:11  
测定了西安郊区和杨凌地区日光温室栽培番茄生长期间及收获后土壤剖面矿质态氮(铵态氮及硝态氮)的含量,分析了不同形态氮素在土壤剖面的累积及分布情况。结果表明,随着番茄的生长,土壤剖面硝态氮含量逐渐降低,降低的幅度因土壤层次不同而异;土壤剖面铵态氮以3月份含量最高,11月份与5月份相近。番茄收获后土壤剖面残留矿质氮以硝态氮为主,约占土壤剖面矿质氮的比例为80%~90%;残留的铵态氮在土壤剖面的分布相对较为一致。蔬菜生长期间及收获时日光温室土壤剖面硝态氮累积量均表现出在土壤表层相对累积现象,且温室土壤剖面硝态氮的残留量仍高于露地及高产农田。为减少硝态氮淋失带来的环境问题,除合理施用氮肥外,如何减少日光温室蔬菜作物收获后残留硝态氮的淋溶是值得进一步研究的问题。  相似文献   

11.
不同肥料结构对红壤稻田氮素迁移的影响   总被引:14,自引:3,他引:14  
不同肥料结构对红壤稻田淹水层、不同深度渗漏水、外排水和土壤剖面中氮素的含量、形态及其动态变化的影响研究结果表明 ,各处理淹水层、外排水和渗漏水中NH4+-N含量明显高于NO3--N。淹水层中N的含量 ,水稻生育前期以单施化肥的高 ,约相当于配施有机肥的 1.18~ 1.20倍 ,而水稻生育后期 ,后者为前者的 1.11~ 1.2 1倍。各处理外排水中N素的输出量均以苗期最高 ,单施化肥明显大于配施有机肥。土壤剖面中NH4+-N向下迁移比碱解N更为明显 ,且配施有机肥的远高于单施化肥的 ,而NO3--N则相反。不同深度渗漏水中NO3--N的比例 ,上层 (30cm)低于下层 (50cm) ,随水逸出的N量各处理渗漏水均小于外排水 ;随水输入的N量远低于随水输出的N量 ,且以单施化肥的N亏损最大。水稻未利用的N量也以单施化肥的最大 ,约为配施有机肥的 1.0 9倍。  相似文献   

12.
To-date, assessments of nitrogen use efficiency (NUE) of sugarcane have not included the contribution of its components, nitrogen uptake efficiency (NUpE) and nitrogen utilization efficiency (NUtE). This study determined these values, based on biomass and plant nitrogen (N) content, in two four-month-old pot-grown genotypes. The treatments included six N regimes, with nitrate (NO3N) or ammonium (NH4+-N) supplied alone, or as NO3?-N for the first 6 weeks and then NH4+-N until harvest, each as 4 or 20 mM. Regardless of the N form, NUE was higher at four than at 20 mM due to significantly higher NUpE at low N supply. The results indicated that there was luxury N uptake and preference for NH4+-N nutrition, which resulted in the highest determined NUE. There were significant differences between genotypes in biomass, morphological growth parameters, N uptake, total plant N and NUE, the latter matching previously established sucrose yield-based NUE field rankings.  相似文献   

13.
ABSTRACT

Plant nitrogen (N)-acquisition strategy affects soil N availability, community structure, and vegetation productivity. Cultivated grasslands are widely established to improve degraded pastures, but little information is available to evaluate the link between N uptake preference and forage crop biomass. Here an in-situ 15N labeling experiment was conducted in the four cultivated grasslands of Inner Mongolia, including two dicots (Medicago sativa and Brassica campestris) and two monocots (Bromus inermis and Leymus chinensis). Plant N uptake rate, shoot- and root biomass, and concentrations of soil inorganic-N and microbial biomass-N were measured. The results showed that the root/shoot ratios of the dicots were 2.6 to 16.4 fold those of the monocots. The shoot N concentrations of the dicots or legumes were 40.6% to 165% higher than those of the monocots or non-legumes. The four forage crops in the cultivated grassland preferred to uptake more NO3?-N than NH4+-N regardless of growth stages, and the NH4+/NO3? uptake ratios were significantly lower in the non-legumes than in the legumes (p < 0.05). Significant differences in the NH4+-N rather than NO3?-N uptake rate were observed among the four forages, related to plant functional types and growth stages. The NH4+ uptake rate in the perennial forages exponentially decreased with the increases in shoot-, root biomass, and root/shoot ratio. Also, the plant NH4+/NO3? uptake ratio was positively correlated with soil NH4+/NO3? ratio. Our results suggest that the major forage crops prefer to absorb soil NO3?-N, depending on soil inorganic N composition and belowground C allocation. The preferential uptake of NO3?-N by forages indicates that nitrate-N fertilizer could have a higher promotion on productivity than ammonium-N fertilizer in the semi-arid cultivated grassland.  相似文献   

14.
In this paper, the uptake kinetics of various nitrogens (nitrate (NO3?), ammonium (NH4+), urea, amino acid) by Chinese kale (Brassica oleracea L. var. Bailey) were studied under hydroponic condition. The results indicated that the uptake kinetics of organic and inorganic nitrogen (N) by Chinese kale conform to the Michaelis–Menten equation, and the maximum uptake rate (Vmax) and affinity index (1/Km) showed nitrate (NO3N) > ammonium (NH4+-N) > urea-N > Gly-N, with significant differences between treatments (p < 0.05). Adding different types of N to NO3? nutrient solution had little impact on its affinity, but significantly decreased the NO3? Vmax, which showed NO3N > NO3? + NH4+ > NO3? + urea > NO3? + Gly. Chinese kale preferred inorganic N to organic N, with NO3? preceding NH4+. Adding organic and NH4+ N to nutrient solution reduced the NO3? uptake capacity by the plant.  相似文献   

15.
小麦苗期施入氮肥在土壤不同氮库的分配和去向   总被引:7,自引:2,他引:7  
应用盆栽试验和15N标记技术研究了小麦苗期施入N肥后土壤不同N库的动态。结果表明 ,施肥后 28d ,作物所吸收的土壤N占总吸N量的 58.1% ,吸收的肥料N占 41.9%。作物对肥料N的利用率达到 55.3% ,N肥在土壤中的残留率为 24.3% ,损失率为 20.4%。施肥后短期以NH4+-4 N存在的肥料N占施N量的 50.5% ,随着硝化作用的进行和作物的吸收 ,土壤中的NH4+-N显著下降。NO3--N在第 7d达到高峰 ,表现为先升高后降低的趋势 ,说明施肥后在 7d以前有强烈的硝化作用发生。施肥后 2d ,以固定态铵存在的肥料N占 33.7% ,至 28d ,仅占施入N量的 2.4% ,说明前期固定的铵在作物生长后期又重新释放出来供作物吸收。在施肥后第 7d ,肥料N以微生物N存在的量占施肥量的 15.2% ;至 28d来自肥料N的微生物N也几乎被耗竭 ,仅占施N量的 2.4%。随作物生长 ,肥料N在各个土壤N库中的数量均显著下降。在其它N库几乎被耗竭的情况下 ,至施肥后 28d主要以有机N的形式残留。在不种作物的条件下 ,土壤N素的矿化量很低 ,作物的吸收作用导致土壤有机N库不断矿化 ,施入N肥后 ,土壤N素的矿化量增加 ,表现为明显的正激发效应  相似文献   

16.
太行山前平原农田生态系统氮素循环与平衡研究   总被引:17,自引:0,他引:17  
在中国科学院栾城生态农业试验站1公顷小麦玉米轮作农田,运用乙炔抑制原状土柱培育法、微气象学法和陶土头多孔杯水量平衡法分别定量测定了氮素硝化反硝化损失、氨挥发、NO3--N淋溶损失等氮素循环转化途径。研究结果表明,每年因氨挥发而造成的肥料氮损失量为N.60.kg/hm2,占施入肥料氮的15%;NO3--N淋溶损失量为N.68~4.kg/hm2,占肥料施用量的1.4%2~0.3%;每年因硝化反硝化过程造成的肥料损失量为N.2.021~0.49.kg/hm2,占肥料施入量的0.51%1~.37%。氨挥发、NO3--N淋溶和硝化反硝化损失主要发生在施肥灌溉/降雨之后,玉米季肥料损失明显高于小麦生长季节。氨挥发和NO3--N淋溶损失是本区域农田氮素损失的主要途径,是氮肥利用率低的重要原因。在当地农民所采用的常规农业管理措施下,小麦玉米轮作农田氮素平衡处于盈余状态,小麦季盈余N+115.5~+124.5.kg/hm2,明显高于玉米季;由于玉米季氮素损失严重,氮素盈余较少,甚至出现亏缺,玉米季氮素平衡状况为-54.6~+14.3.kg/hm2。  相似文献   

17.
用营养液培养方法研究了铁和两种形态氮素(NO3--N和NH4+-N)对玉米植株吸收氮、磷、钾等大量元素和钙、镁等中量元素及其在体内分布的影响。结果表明:与NO3--N相比,供应NH4+-N促进了玉米对氮的吸收,在缺铁条件下,降低了对磷、钾、钙及镁的吸收。铁和NH4+-N都显著提高了玉米植株各器官中氮的含量。与NH4+-N处理相比,NO3--N处理的新叶中磷含量显著增加,但铁的供应对植物体内磷的含量无显著影响。使用NO3--N显著提高了玉米新叶和老叶中钾的含量,根和茎中钾的含量无明显影响。铁的供应降低了新叶和老叶中钾的含量。供铁时,NH4+-N处理的玉米新叶中钙和镁的含量显著低于NO3--N处理,而在缺铁时则无显著差异。  相似文献   

18.
为了研究氮沉降对次生林土壤碳氮组分和酶活性的影响,以华西雨屏区湿性常绿阔叶次生林为对象,从2014年1月起进行野外定位模拟氮沉降试验,分别设置对照(CK,+0 g/(m^2·a))、低氮(LN,+5 g/(m^2·a))和高氮(HN,+15 g/(m^2·a))3个氮添加水平。在氮沉降进行27个月后,按照腐殖质层和淋溶层表层进行取样,测定不同土层土壤总有机碳(TOC)、可浸提溶解性有机碳(EDOC)、易氧化碳(ROC)、全氮(TN)、硝态氮(NO_3^-—N)和铵态氮(NH_4^+—N)含量以及蔗糖酶、脲酶、酸性磷酸酶和多酚氧化酶活性。结果表明:模拟氮沉降显著增加该次生林腐殖质层土壤的TOC和NH_4^+—N含量,显著增加腐殖质层和淋溶层表层土壤的NO_3^-—N含量,腐殖质层土壤C/N显著升高。淋溶层表层土壤TOC、NH_4^+—N、C/N以及2层土壤的EDOC、ROC、TN和NH_4^+—N/NO_3^-—N均无显著影响。2层土壤的多酚氧化酶活性均随着氮添加量的升高而降低,其中淋溶层表层达到显著差异。模拟氮沉降对蔗糖酶、脲酶和酸性磷酸酶活性均无显著影响。腐殖质层中,NH_4^+—N和NO_3^-—N含量与TOC含量存在极显著正相关关系。2层土壤的多酚氧化酶活性均与NO_3^-—N含量呈极显著负相关。结果说明,模拟氮沉降使该次生林中原本较高的腐殖质层土壤TOC含量进一步显著增加,并且促进土壤无机氮的积累,而模拟氮沉降对多酚氧化酶的抑制作用更加有利于土壤有机质的积累。  相似文献   

19.
Barley (Hordeum vulgare L. cv. Martin) plants grown in solution culture, were exposed to increasing cadmium (Cd) concentration (0, 5, 10, 25, 50, and 100 μM) for a duration of 12 days. The sequence of important biochemical steps of nitrate (NO3) assimilation were studied in roots and shoots as a function of external Cd concentration. Cadmium uptake in roots and shoots increased gradually with Cd concentration in the medium. This Cd accumulation lowered substantially root and shoot biomass. The nitrate reductase (NR, EC 1.6.6.1) and nitrite reductase (NiR, EC 1.6.6.4) activities declined under Cd stress. Concurrently, tissue NO3 contents and xylem sap NO3 concentration were also decreased in Cd‐treated plants. These results suggest that Cd could exert an inhibitory effect on the assimilatory NO3 reducing system (NR and NiR) through a restriction of NO3 availability in the tissues. We therefore examined, in short‐term experiments (12 h), the impact of Cd on NO3 uptake and the two reductases in nitrogen (N)‐starved plants that were pretreated or not with Cd. It was found that Cd induced inhibition of both NO3 uptake and activities of NR and NiR, during NO3 induction period. The possible mechanisms of Cd action on NO3 uptake are proposed. Further, in Cd‐grown plants, the glutamine synthetase (GS, EC 6.3.1.2) showed a decreasing activity both in shoots and roots. However, increasing external Cd concentration resulted in a marked enhancement of glutamate dehydrogenase (NADH‐GDH, EC 1.4.1.2) activity, coupled with elevated levels of ammonium (NH4 in tissues. On the other hand, the total protein content in Cd‐treated plants declined with a progressive and substantial increase of protease activity in the tissues. These findings indicate that under Cd stress the usual pathway of NH4 assimilation (glutamine synthetase/glutamate synthase) can switch to an alternative one (glutamate dehydrogenase). The changes in all parameters investigated were concentration‐dependent and more marked in roots than shoots. The regulation of N absorption and assimilation by Cd in relation to growth and adaptation to stress conditions are discussed.  相似文献   

20.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号