首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 749 毫秒
1.
The Fort Valley Experiment Station (now Fort Valley Experimental Forest) has contributed many long-term studies to forest research. This paper focuses on a “Methods of Cutting” study initiated in 1913 on the Coulter Ranch Unit of Fort Valley and how that long-term study yielded important ecological and management lessons. We quantified the historical and contemporary forest patterns at this ponderosa pine–Gambel oak site, which was harvested using three different harvesting systems in 1913 (seed tree, group selection, and light selection) and was partially excluded from livestock browsing in 1919. Using nine historically stem-mapped permanent plots for the following three stand structural scenarios: 1913 pre-harvest (modeled), post-harvest (actual), and 2003–2006 (actual) conditions, we examined the short- and long-term consequences of harvest and livestock grazing land-use and stand dynamics. We assessed changes in spatial pattern under each harvesting system and in each structural scenario, and lastly, we examined spatial and temporal tree recruitment patterns as observed in the contemporary (2003–2006) conditions. The seed tree harvests effectively converted the spatial patterns from aggregated to random and left few trees, while the group selection and light selection had varying effects, but consistently exaggerated the spatial patchiness of the stand. By 2003–2006, all plots were aggregated at all scales and were one large patch of predominately small trees. Sites that were harvested, but excluded from livestock browsing had 40% more trees in 2003–2006. Contemporary recruitment patterns were significantly aggregated under all harvesting systems, but were most strongly aggregated if the site received a group selection or light selection cut. For group and light selection, pine seedlings initially established in stump patches created by harvesting and then proceeded to fill-in the remaining area, with recruitment rarely found under the residual pine or oak trees. Long-term data sets, such as these established by the Fort Valley Experimental Forest in 1913, are essential for quantifying the impact of historical land-use practices on contemporary forest composition and structure. Ignoring land-use legacies may lead to the misinterpretation of stand dynamics and development, and therefore should be explicitly quantified and incorporated into future management and restoration activities.  相似文献   

2.
Understanding forest dynamics and stand structures is crucial for predicting forest succession. However, many forests have been altered due to century-long land-use practices, which complicates the reconstruction of past and current successional trajectories. For a better understanding of successional processes, we suggest studying the intra- and interspecific competition among single trees across time. We introduce a tree-ring based competition index to reconstruct the competitive dynamics of individual trees over time. This new retrospective dynamic competition index combines a temporal and a spatial component by calculating the yearly ratio between the basal area increments (bai) of the neighbouring trees and the subject tree. The new index is applied to mixed Scots pine (Pinus sylvestris L.) and pubescent oak (Quercus pubescens Willd.) stands in the inner-Alpine dry-valley Valais, for which a change in species composition is hypothesised. The aim is to analyse current stand structures in terms of recent changes in the competitive interactions at the single tree level and to relate these competitive dynamics to land-use change and increasing drought due to climate change. On five plots, the positions of 456 trees were recorded and increment cores were taken to derive bai data. The individual dynamic competition index curves were aggregated in clusters, which define typical patterns of competitive dynamics in both tree species. A large percentage of the trees (87% in oak, 70% in pine) were clustered into a group of trees with constant competition at a relatively low level. However, a smaller group of pines (20%) had recently faced increasing competition. In addition, stand structure analyses indicated a change towards a higher proportion of oak. This change in the competitive ability between oak and pine was found to be related to drought, in that oak had a competitive advantage in dry years. Furthermore, the high proportion of dead branches in pines with decreasing competitive abilities indicated increasing competition for light as a consequence of natural development towards a later successional stage that favours the more shade-tolerant oak. The new retrospective dynamic competition index proved to be promising in studying forest succession. The tree-ring based method allows us to identify changes in the competitive ability of single trees with a high temporal resolution and without repeated assessments.  相似文献   

3.
We investigated the individual-scale responses of five dominant species (Abies sachalinensis, Acer mono, Tilia japonica, Quercus crispula, and Betula ermanii) to single-tree selection harvesting in a conifer–broadleaved mixed forest in Hokkaido, northern Japan. Using data from stems with a diameter at breast height of ≥12.5 cm, collected during 20 years of monitoring a 6.7-ha stand, we analyzed the effects of harvesting in the neighborhood on tree recruitment and the growth (diameter class transition) and mortality of the residual trees. The effects of harvesting varied considerably among tree sizes and species. Harvesting improved the recruitment of A. mono and B. ermanii, and moderated the negative effect of the initial basal area of the surrounding canopy trees on the recruitment of Q. crispula. Conversely, harvesting limited the recruitment of A. sachalinensis by offsetting the positive effect of the initial basal area of the surrounding canopy trees. The growth of A. sachalinensis and Q. crispula decreased with the initial basal area of the surrounding canopy trees. Harvesting in the neighborhood resulted in an improvement in the growth of the trees of these species only in the smaller size classes. With increasing local harvesting intensity, the mortality of smaller A. sachalinensis trees decreased, whereas the mortality of larger trees increased. These results suggest that differences in the local harvesting intensity, spatial patterns of harvesting, and initial stand structures influence the stand-scale dynamics in response to partial harvesting in the mixed forests of this region.  相似文献   

4.
Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40 years. In the complete absence of browsing, the density of small trees increased slightly after 60 years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressure.  相似文献   

5.
There is little knowledge how ungulate pressure on forest regeneration may be mitigated by silvicultural methods. The knowledge is especially needed for artificially regenerated, deciduous tree species. We studied factors affecting browsing incidence by deer in the Pisz Forest District in Poland, an area where 10,000 ha of forest was damaged by a 2002 hurricane. In 2006, we established three experimental plots (in total, 22.6 ha), in which the main species was Scots pine (Pinus sylvestris) admixed with pedunculate oak (Quercus robur). The data on browsing were collected in 2008–2015. In general, oak browsing incidence was unrelated to oak planting density. On a plantation scale, it was significantly affected by the pine age. Although in each variant all the oaks were browsed for four consecutive years (2009–2012), in 2013 browsing incidence began to decrease. When the pines grew higher and formed a physical barrier, it was harder for deer—roe deer (Capreolus capreolus), red deer (Cervus elaphus) and moose (Alces alces)—to move through and locate the oaks. Moreover, within plantations, oak browsing incidence was higher in the patches with shorter pines. Browsing of individual saplings or small groups of saplings was also negatively affected by the height of neighbouring pine saplings. Oak density influenced deer selectivity depending on the tree height. In a low oak tree density, browsing incidence was unrelated to oak height, while in higher tree density, deer selected oaks of the height between 40 and 100 cm. We postulate that deciduous admixture in a coniferous (unattractive) stand can be planted with a few year delay. Older coniferous trees should impede locating of attractive tree species by deer and the browsing incidence.  相似文献   

6.
Complexity of uneven-aged forests results from the heterogeneity of their structure reflected among others by the spatial pattern of their components. Forest structure is usually modified by various processes operating at different scales and time. Structure and processes are not independent, and both are important drivers of forest dynamics. The impact of natural processes on forest structure manifested in the specific spatial pattern of trees can be quantified by point pattern analysis applied to long-term repeatedly measured stem-mapped plots. Such studies are relatively scarce in the literature although they provide better insight into the mechanisms affecting forest dynamics. Our study is focused on the spatiotemporal analysis of the structure of mixed uneven-aged Scots pine-dominated forest located at the Kampinoski National Park (Poland). Univariate analysis showed that the initial pattern of all live trees was initially random and it shifted toward more uniform with forest aging. Spatial patterns of individual tree species varied from that stated for all forest community. We observed changes in spatial pattern of Scots pine and common oak from random toward more clumped (pine) or uniform (oak) pattern. In case of black alder and common birch, the initial aggregated pattern was maintained over the examined 14-year period of the forest succession. Bivariate analysis showed that the most common interspecific association between pairs of tree species was spatial segregation (pine vs. alder, alder vs. birch and oak vs. birch) followed by spatial independence (pine vs. oak and oak vs. alder). The positive association was stated only for pine and birch and only for certain spatial scales (> 5 m). Simultaneously, at small distances they showed reciprocal repulsion. Changes in spatial relationships between tree species were negligible over 14-year period of forest succession. Our results confirmed the density-dependent mortality process in the uneven-aged Scots pine-dominated forest over 14-year period of forest development. Our study showed that spatial interactions between individuals along with species-specific ecological requirements should be incorporated into realistic models of forest development, helping to manage the forest ecosystems toward their greater structural complexity.  相似文献   

7.
This study assessed the sustainability of selection cutting in a community forest (CF) in Bhutan. The harvesting approach differed from cable crane logging operations in an adjacent commercially managed forest by creating much smaller canopy openings. This had many implications for natural regeneration of preferred species. The study was conducted in a late successional broadleaved CF containing 32 genera of tree species dominated by Quercus and Castanopsis and managed for timber, firewood, non-wood forest products and forest grazing. The study was based on a comparison of two forest inventories to assess forest structure and regeneration, a study of stumps to quantify harvesting intensities, and a household survey to quantify livestock holdings and grazing patterns. The study examined different intensities of selection cutting in three blocks of the CF and found that higher intensities of selection cutting did not have a negative impact on: (a) natural regeneration of seedlings and saplings of preferred timber species; (b) the diameter distribution of all species and use categories except for Quercus; (c) the diversity of tree genera; and (d) the percentage of remaining trees with favorable bole shape and form. These results contrasted with findings in the adjacent commercially managed forest. Community management of broadleaved forests with selection cutting appeared to be sustainable and avoid some of the unresolved silvicultural problems associated with commercially managed forests in Bhutan. However more research is needed on the sustainable management of Quercus spp.  相似文献   

8.
The threat of climate change is now recognized as an imminent issue at the forefront of the forest sector. Incorporating adaptation to climate change into forest management will be vital in the continual and sustainable provision of forest ecosystem services. The objective of this study is to investigate climate change adaptation in forest management using the landscape disturbance model LANDIS-II. The study area was comprised of 14,000 ha of forested watersheds in central Nova Scotia, Canada, managed by Halifax Water, the municipal water utility. Simulated climate change adaptation was directed towards three components of timber harvesting: the canopy-opening size of harvests, the age of harvested trees within a stand, and the species composition of harvested trees within a stand. These three adaptation treatments were simulated singly and in combination with each other in the modeling experiment. The timber supply was found to benefit from climate change in the absence of any adaptation treatment, though there was a loss of target tree species and old growth forest. In the age treatment, all trees in a harvested stand at or below the age of sexual maturity were exempt from harvesting. This was done to promote more-rapid succession to climax forest communities typical of the study area. It was the most effective in maintaining the timber supply, but least effective in promoting resistance to climate change at the prescribed harvest intensity. In the composition treatment, individual tree species were selected for harvest based on their response to climate change in previous research and on management values at Halifax Water to progressively facilitate forest transition under the altered climate. This proved the most effective treatment for maximizing forest age and old-growth area and for promoting stands composed of climatically suited target species. The size treatment was aimed towards building stand complexity and resilience to climate change, and was the most influential treatment on the response of timber supply, forest age, and forest composition to timber harvest when it was combined with other treatments. The combination of all three adaptation treatments yielded an adequate representation of target species and old forest without overly diminishing the timber supply, and was therefore the most effective in minimizing the trade-offs between management values and objectives. These findings support a diverse and multi-faceted approach to climate change adaptation.  相似文献   

9.
为了弄清优质林分的结构特征,应用传统林分结构因子分析方法,配合混交度、角尺度、大小比数3个林分空间结构参数,分析了位于江苏宜兴近郊的自然保护区内宜兴小黑沟石栎、青冈栎、杉木混交林的空间结构特征。结果表明:石栎、青冈栎、杉木混交林物种丰富度较高,乔木层共出现9个树种,径级结构分布连续,群落垂直结构特征明显,可分为3个林层;林分平均混交度为0.516,处于强度混交状态;林分平均角尺度为0.482,属于随机分布;林分平均大小比数为0.482,有超过40%的林木处于优势状态;石栎、青冈栎和杉木种群优势度明显,群落暂时处于相对稳定状态。  相似文献   

10.
Regeneration of commercial species is central to long-term success of multiaged management for wood production. We examined relationships between understory light, varying overstory tree retention, and growth of coast redwood (Sequoia sempervirens; commercial species) and tanoak (Notholithocarpus densiflorus) stump sprouts initiated by group selection and single-tree selection harvesting in 80–100 year old mixed stands at four sites. Treatments included a complete harvest in 1-ha group selection openings, low-density dispersed retention, and either aggregated or dispersed high-density retention. Post-harvest stand density index and basal area were useful predictors of understory light. Mean and maximum understory light did not differ significantly between treatments with the same density where residual trees were retained in aggregated versus dispersed spatial patterns. However, the dispersed retention had lower minimum light levels when compared to the aggregated retention treatment. Aspect appeared to influence understory light more in dispersed treatments. At all light levels, the dominant sprout within clumps of redwood stump sprouts generally grew faster than dominant tanoak sprouts within tanoak sprout clumps. Differences in sprout height growth between aggregated and dispersed treatments were minimal. Stump size had a significant effect on redwood stump sprout height growth, with sprouts on the largest stumps growing approximately twice as quickly as sprouts on the smallest stumps. In the low density dispersed treatment, redwood sprouts outperformed tanoak sprouts by the greatest margin. Regeneration of redwood and tanoak was most rapid within group selection openings.  相似文献   

11.
In uneven-aged conifer–broadleaved mixed forests in Hokkaido, northern Japan, single-tree selection cutting has been a common management practice since the early twentieth century. This practice is expected to produce timber without major changes in stand structure or tree species composition. The demographic response of forests to this practice has often been unexpected, and degradation of stand properties has been widely observed. We propose here a sustainable management regime of selection cutting, based on an individual-based forest dynamics simulation model, SORTIE-ND. Our simulations, based on demographic data from 15 long-term monitoring stands, suggest that selection cutting using a lower cutting intensity together with a longer rotation period and reduced removal of small trees and conifer species is more appropriate than traditional systems in terms of maintaining stand structure and tree species composition, as well as being profitable financially. Supplemental regeneration practices, which can counter accidental mortality incurred during harvesting operations, would also be necessary to ensure tree recruitment.  相似文献   

12.
In natural plant populations, leaf polyphenols show high intraspecific variation that occurs both temporally and spatially. Leaf phenolics may be induced by diverse ecological factors such as light, nitrogen availability or herbivory attack. Both light and nitrogen availability can show spatial structure in forested stands, meaning that they each have a high degree of autocorrelation, which can determine the appearance of spatial structure in leaf polyphenols. However, the availability of these resources may be drastically changed by forest disturbance, and little is known about the effect of forest disturbance on the spatial pattern and scale of leaf secondary compounds. We hypothesise that the spatial structure of leaf polyphenols in understory vegetation will disappear due to forest harvesting, because these compounds depend on light availability, yet it will remain unaltered for those compounds that either depend on the availability of other resources or are under major genetic control. The study was performed in young pedunculate oak (Quercus robur) populations growing either under a pine canopy (Pinus pinaster) stand or in a pine harvested stand in NW Spain. The spatial structures of green and senescent leaf polyphenols, tannins, non-tannin polyphenols and nitrogen were analysed in both stands using geostatistical analysis. The spatial structures observed for green and senescent leaf polyphenols and tannins in the forested stand disappeared in the harvested stand. However, non-tannin polyphenols, as well as nitrogen, showed spatial structure in both stands. Understanding these changes may be important for the successful recovery of native oak populations growing under pine forests in NW Spain, one of the priorities of the local government. Our results showed that changes in the concentration of leaf secondary compounds after disturbance may be accompanied by differences in their spatial properties, which may have important consequences for ecosystem function.  相似文献   

13.
Absence of, or poor, oak (Quercus spp.) regeneration is a problem in uneven-aged, mixed closed-canopy broadleaved forests. Browsing by ungulates on small trees may contribute to poor oak regeneration in such forests. This possibility was investigated in 25 Swedish stands, and browsing damage was analysed in relation to landscape and stand factors. The proportion of browsed small (<20 cm tall) oak seedlings and other seedlings was low, and apparently a minor mortality factor. For saplings (20–130 cm tall), accumulated browsing damage was generally higher on oak than on five major competing tree species: Fraxinus excelsior, Corylus avellana, Tilia cordata, Acer platanoides and Sorbus aucuparia. Leaf removal was rare in late summer, except for rowan. The amount of cover (shelter) for ungulates near plots was positively correlated with oak browsing intensity; within plots, a high density of ash saplings may reduce browsing on oak saplings. In these forests, browsing probably retards growth of oak saplings relative to competing trees. Oak may persist as a minor stand component, but monitoring is needed to study future changes.  相似文献   

14.
We focused our attention on quantifying the factor complex of forest regeneration in 423 mature and old stands with contrasting environmental conditions. We recorded the microhabitat selection of tree recruits, the frequency of tree seedlings, and evaluated the drivers of sapling abundance and diversity. The majority of forest regeneration was established on undisturbed forest floor. Dead wood was a frequent substrate in spruce-(co)dominated forests. Seedling frequency within a stand was related to the site-type specific productivity gradient of stands—pine seedlings were common in low-productivity and spruce in high-productivity boreal forests. Seedlings of temperate broad-leaved trees dominated in productive boreonemoral forests, except for oak, which showed a uniform distribution of abundance in all forest site-types. Sapling abundance was dictated by forest site-type, and facilitated by stand diversity, variability in stand closure, lying dead wood, abundant moss, and a thick organic layer. Only in boreal forests was sapling abundance suppressed by the abundant spruce and younger trees. Upon considering the relationship between sapling abundance and species richness, sapling diversity was dependent on forest site-type, suppressed by stand density and dead wood (old gap) abundance, and facilitated by stand diversity. In addition, boreonemoral stands, competition from herbs, and facilitation by mosses occurred. The observed pattern of tree recruitment points to the importance of top-down effects of the overstory, competing or facilitating interactions with forest floor vegetation, and availability of regeneration microhabitats, which in complex make their ecology comparable with forest herbs. Natural forest regeneration can be enhanced if silvicultural methods support mixed stands and enhance field layer diversity. Oak can provide the universal tree species to improve stand structure over a wide range of habitats.  相似文献   

15.
Our study used allozyme analyses to evaluate potential impacts of ecological restoration treatments on genetic diversity of ponderosa pine (Pinus ponderosa var. scopulorum) populations within the Fort Valley Experimental Forest near Flagstaff, AZ. Allele frequencies varied among pre-settlement clumps, with trees more closely related to each other within clumps. This clumpy spatial stand structure typical of reference conditions thus represents “genetic neighborhoods” and suggests restoration of clumpy versus more evenly dispersed trees in naturally regenerating stands will protect evolutionary genetic patterns. Compared to pre-settlement populations, post-settlement trees had slightly greater heterozygosity, and allelic richness and allele frequencies varied between these two age groups. These genetic differences could have resulted from different selective conditions under which the two age groups became established. Genetic diversity of populations created using different selection criteria for residual post-settlement trees did not vary but simulated removal of 75% of post-settlement trees decreased allelic richness. Maintaining more clumps created from post-settlement populations with higher tree densities across the landscape would be more effective at conserving allelic richness. Overall results of this study indicate use of genetic structure and diversity can help guide restoration treatments to help ensure adaptive potential is conserved.  相似文献   

16.
17.
Effective management and restoration of ponderosa pine forests requires an understanding of the heterogeneity of contemporary and historical stand structures. We assessed spatial and temporal patterns of tree establishment, mortality and size structure over a 30-year period in an old-growth ponderosa pine stand in the mid-montane zone of the Colorado Front Range. We analyzed spatial patterns and spatial associations using Ripley's K(t) and K12(t) and then modeled the patterns using point process models. Forest age structure was estimated by aging a sub-sample of trees in the stand. Climate appeared to play a significant role in the coarse-scale temporal pattern of regeneration events. Stand structure (distribution of patches, light availability, and seed trees) influenced the spatial and temporal pattern of more recent regeneration events. Patchy regeneration resulted in spatial independence and some segregation of size classes. Older trees in the stand (40–55 cm dbh) exhibited some regularity in their spatial distribution at short distances indicating that patterns of mortality had been historically patchy. Contemporary patterns of mortality were mostly patchy, and mountain pine beetles caused a significant amount of mortality in the 1970s and 1980s. Both establishment and mortality retained spatial patterns that were somewhat consistent with pre-settlement forests, despite changes in driving processes.  相似文献   

18.
Selective logging is the most widely employed method of commercial timber production in Asia, and its impact on forest structure, composition, and regeneration dynamics is considerable. However, the successional processes in forest communities after logging in semiarid mountains are poorly understood. To provide more information on these processes, we used data from tree rings, direct and indirect age determinations, and field measurements of stand structure to reconstruct the historical disturbance regime, stand development patterns, and successional processes in a natural Picea crassifolia forest community in the Qilian Mountains of northwestern China. The results showed that the density of P. crassifolia forest increased significantly after logging. The densities of second growth forests 30 and 70 years after logging disturbance had increased to 2874% and 294% of primary forest's density, respectively. Logging disturbance did not alter tree species composition of logged stands. However, the diversity of understory species changed significantly among the successional phases. Logging disturbance decreased the spatial heterogeneity of second growth forest. The spatial distributions of recruitment were affected by the location of the remaining trees. There was less recruitment near the remaining trees than near forest that had been cut. In addition, logging disturbance also induced a growth release for the trees on the sites sampled. Our results imply that the succession and regeneration of P. crassifolia forest may be improved if the remaining trees could be retained relative uniform distribution pattern, thinning or selective logging could be performed to height density, exotic shrubs could be removed or the shrubs cover could be reduced during the earlier successional stages.  相似文献   

19.
In the Swiss Alps, 15% of Swiss mountain forests are grazed during summer, mainly by cattle. The forest laws of various Swiss cantons characterise forest grazing as a detrimental form of land use and stipulate that this grazing practice should be restricted. However, little is known about tree damage actually caused by cattle. Seven subalpine ranges in the Swiss Canton Grisons, grazed by cattle at different stocking rates, were investigated. The condition of naturally regenerated young trees (Picea abies (L.) Karst.) was assessed before and after the cattle grazing period. In order to characterise the influence of wild ungulates on the young trees during winter, the assessment of tree condition was repeated in the proximate spring. In total, 4% of the young trees were browsed on the apical shoot, 10% were browsed on lateral shoots, 13% of the trees showed other damage. The variation among ranges could almost completely be explained by the cattle stocking rate (livestock units per hectare). During winter, wild ungulates browsed 3 times as many young trees as the cattle during summer. The results suggest that cattle stocking rates on subalpine wood pastures should not exceed one livestock unit per hectare in order to avoid intensive browsing and other damage by cattle on young Norway spruces.  相似文献   

20.
Wooded pastures grazed by livestock are believed to be landscapes that provide favourable conditions for spontaneous regeneration of oaks, including Quercus robur. A key mechanism for oak regeneration in these systems is ‘associational resistance’, spatial association with unpalatable plants which offer protection against herbivory. There is little knowledge on how oak regenerates without livestock grazing and in the presence of only wild large herbivores. We studied this in an area (114 ha) abandoned from agricultural use and in the early 1980s incorporated into the Bia?owie?a National Park, Poland. Its ungulate community consists of native red deer, European bison, roe deer, moose and wild boar. Secondary succession has led to the development of a mosaic habitat including tree and tall shrub groves (29% of the area), open meadow communities (60%), and edge, transitory zone between groves and meadows (11%). Our systematic inventory assigned oaks to height classes (0-0.2, 0.2-0.5, 0.5-1.3, 1.3-2.5, 2.5-5.0, >5.0 m), dichotomous shape characteristic (regular vs. “bonsai” sapling), as well as a habitat definition, in particular the characteristics of woody vegetation in the immediate surroundings of oaks. A selection of 17 oaks was subject to coring for the comparison of growth dynamics. Oak density was highest inside groves, with 504 oaks ha−1, and in the edge zone (493 oaks ha−1) and lowest in meadows (47 oaks ha−1). Most of the 0-5-m oaks (62%) grew without another woody plant species within 1 m radius. The remaining oaks (38%) were associated mainly with Rubus idaeus and saplings of Carpinus betulus and Populus tremula - all highly ungulate-preferred species. The age (0.5 m above ground) of cored oaks in grove and edge habitats varied from 11 to 37 years, indicating continuous recruitment since agricultural abandonment. The initial growth dynamics of the more mature oaks did not differ from that of present “bonsais,” supporting the idea that browsing is not an unconditional impediment and that “bonsai” can be a temporary stage of successful oak development. In contrast to other studies, we found that associational resistance from unpalatable plants is not necessary to secure successful oak regeneration in woodlands subject to browsing by wild ungulates. This might have been possible because of the abundance of highly attractive vegetation making oak relatively unpreferred by ungulates. We suggest that the observed secondary succession provides a contemporary analogy of historic processes that resulted in the establishment of broadleaf forests with a substantial proportion of oak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号