首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Secondary cavity-nesting birds (SCN), which cannot create their own breeding cavities, are expected to be influenced by habitat alteration caused by forest management practices, but the mechanisms underlying the distribution pattern of SCN subjected to different management systems are poorly known. To improve our knowledge on these mechanisms, we examine cavity abundance, cavity occupation and reproductive performance of SCN in Pyrenean oak (Quercus pyrenaica) forests subjected to two management systems: (i) dense “young forests”, maintained at such stage by clear-cuttings and burns, and (ii) “old forest”, subjected to extensive traditional grazing and scarce firewood extraction by selective cutting. Young forests had considerably lower density of cavities (1.29 ± 0.71 vs 15.09 ± 2.00 cavities ha−1), SCN species (0.18 ± 0.11 vs 0.61 ± 0.07 species ha−1) and nests (0.40 ± 0.27 vs 2.67 ± 0.25 nests of all SCN ha−1) than old forests, indicating that a low availability of cavities may limit SCN assemblages in young oak forests. However, reproductive parameters of great (Parus major) and blue (Cyanistes caeruleus) tits associated with the availability of food (laying date, clutch size, nestling number and weight, adult weight) did not differ between both forest types, suggesting that food supply was not reduced in young forests, at least for tits during the breeding season. Large diameter (up to 170 cm dbh) decayed trees were the most likely to hold cavities, but birds preferred smaller living cavity-trees for nesting (90% of nests in 21-65 cm dbh trees). The preservation of cavity-trees within traditionally managed old oak forests is crucial in providing nesting opportunities to SCN. Besides, the protection of these traditionally managed forests would also benefit to other forest organisms that depend on old and open oak forests.  相似文献   

2.
In southeastern pine–oak ecosystems, ecological restoration targets oaks for removal by chemical, mechanical, burning, or combinations of treatments. Managers often pursue oak removal indiscriminately despite the poorly understood historical structure, cover, and ecological function within these ecosystems. Restoration treatments often cite the impediment that oak litter represents to prescribed fire spread and effectiveness. We evaluated the burning characteristics of eight southeastern Quercus spp. by burning collected litter under controlled conditions in a combustion chamber. Replicated burns consisted of 15 g of litter on a 35 cm × 35 cm grid of xylene-soaked cotton strings. Burning characteristics measured included maximum flame height (cm), flaming duration (s), smoldering duration (s), residual ash, and mass loss rate (g s−1). We compared all 8 oaks using ANCOVA, with litterbed depth as a covariate. The oaks differed for all burning characteristics measured (P < 0.001). Rank comparisons placed Quercus stellata and Quercus laevis as the species with greatest fire intensity, sustainability, and consumability, equivalent in many measures to longleaf pine and other fire resisters. Quercus virginiana and Quercus hemisphaerica burned with the least intensity, sustainability, and consumability, burning similarly to sand pine and other fire evaders. These results show that oaks common to southeastern United States ecosystems have litter properties, similar to pines, which vary in their ability to sustain fire. Understanding the pyric properties of oak species also suggests that managers prioritize removal of species that hinder prescribed fire effectiveness for restoration of southeastern USA pine–oak ecosystems.  相似文献   

3.
Sudden oak death, caused by Phytophthora ramorum, is widely established in mesic forests of coastal central and northern California. In 2000, we placed 18 plots in two Marin County sites to monitor disease progression in coast live oaks (Quercus agrifolia), California black oaks (Q. kelloggii), and tanoaks (Lithocarpus densiflorus), the species that are most consistently killed by the pathogen in these areas. Through early 2008, the numbers of newly infected trees increased for all species. The infection rate for trees that were asymptomatic in 2000 was 5.0% y−1 for coast live oaks, 4.1% y−1 for black oaks and 10.0% y−1 for tanoaks. Mortality rates were 3.1% y−1 for coast live oaks, 2.4% y−1 for black oaks, and 5.4% y−1 for tanoaks. Mortality not attributed to P. ramorum was 0.54% y−1 for coast live oaks, and 0.75% y−1 for tanoaks. Weibull survival models of trees that were asymptomatic in 2000 provided overall median survival times of 13.7 y for coast live oaks, 13.8 y for black oaks, and 8.8 y for tanoaks. Survival of infected (bleeding) trees declined to 9.7 y for coast live oaks, 6.2 y for black oaks, and 5.8 y for tanoaks. Ambrosia beetle attacks on bleeding trees further reduced modeled survival times by 65–80%, reaffirming the earlier finding that beetle attacks on bleeding cankers considerably reduce survival. Across all plots, the modeled time for 90% of trees that were asymptomatic in 2000 to become infected is 36.5 y for coast live oaks and 15.4 y for tanoaks. There was a trend toward higher infection rates as tree diameter increased. Greater than 90% of living coast live oaks that failed during the study had extensive beetle tunneling at the site of the break. Disease intensity in coast live oaks at the plot level was positively associated with bay laurel (Umbellularia californica) basal area and negatively associated with Pacific madrone (Arbutus menziesii) basal area. This study demonstrates the use of survival modeling to characterize the effects of epidemic disease on different species and to project the future of forests infected with tree pathogens.  相似文献   

4.
The main objectives were to study the effect of gap size and canopy openness on the natural regeneration dynamics considering the parameters of sapling growth, recruitment, mortality, density, species composition and above-ground biomass accumulation. The study was carried out in 32 artificial gaps with sizes varying from 100 to 1200 m2 and canopy openness from 10 to 45%, from the second to the twelfth year after gap creation. The gap size was measured using the vertical projection of the tree crowns on the ground (Brokaw's definition), and the canopy openness measurement by hemispherical photography. In the first five years, mean sapling growth (0.54 cm year−1), mortality (3.9% year−1) and AGB (26.2 Mg ha−1 or 8.7 Mg ha−1 year−1) were significantly higher in the gaps than in the forest understorey (0.17 cm year−1, 1.5% year−1 and −0.59 Mg ha−1 year−1 respectively) and positively correlated with gap size and canopy openness. In the same period, recruitment was also significantly higher in the gaps (5.8% year−1) than in the forest understorey (0.4% year−1) but decreased with gap size and negatively correlated with canopy openness. In the first five years, the relative density of pioneer species was higher in the gaps but not significantly correlated with gap size or canopy openness. AGB increased linearly since canopy opening, and twelve years after gap creation it was still higher in larger (121.2 Mg ha−1 or 10.1 Mg ha−1 year−1) rather than smaller (62.5 ha−1 or 5.2 ha−1 year−1) gaps. Twelve years after gap creation there were no significant differences in the parameters of sapling growth, recruitment, and mortality which could be attributed to the original gap size and canopy openness.  相似文献   

5.
We estimated water use by the two main oak species of the Lower Galilee region of Israel—Tabor (Quercus ithaburensis) and Kermes (Quercus calliprinos)—to develop management options for climate-change scenarios. The trees were studied in their typical phytosociological associations on different bedrock formations at two sites with the same climatic conditions. Using the heat-pulse method, sap flow velocity was measured in eight trunks (trees) of each species during a number of periods in 2001, 2002 and 2003. Hourly sap flux was integrated to daily transpiration per tree and up-scaled to transpiration at the forest canopy level. The annual courses of daytime transpiration rate were estimated using fitted functions, and annual totals were calculated. Sap flow velocity was higher in Tabor than in Kermes oak, and it was highest in the youngest xylem, declining with depth into the older xylem. Average daytime transpiration rate was 67.9 ± 4.9 l tree−1 d−1, or 0.95 ± 0.07 mm d−1, for Tabor oak, and 22.0 ± 1.7 l tree−1d−1, or 0.73 ± 0.05 mm d−1, for Kermes oak. Differences between the two oak species in their forest canopy transpiration rates occurred mainly between the end of April and the beginning of October. Annual daytime transpiration was estimated to be 244 mm year−1 for Tabor oak and 213 mm year−1 for Kermes oak. Adding nocturnal water fluxes, estimated to be 20% of the daytime transpiration, resulted in total annual transpiration of 293 and 256 mm year−1 by Tabor and Kermes oaks, respectively. These amounts constituted 51% and 44%, respectively, of the 578 mm year−1 average annual rainfall in the region. The two species differed in their root morphology. Tabor oak roots did not penetrate the bedrock but were concentrated along the soil–rock interface within soil pockets. In contrast, the root system of Kermes oak grew deeper via fissures and crevices in the bedrock system and achieved direct contact with the deeper bedrock layers. Despite differences between the two sites in soil–bedrock lithological properties, and differences in the woody structure, annual water use by the two forest types was fairly similar. Because stocking density of the Tabor oak forests is strongly related to bedrock characteristics, thinning as a management tool will not change partitioning of the rainfall between different soil pockets, and hence soil water availability to the trees. In contrast, thinning of Kermes oak forests is expected to raise water availability to the remaining trees.  相似文献   

6.
An accurate characterization of tree carbon (TC), forest floor carbon (FFC) and soil organic carbon (SOC) in tropical forest plantations is important to estimate their contribution to global carbon stocks. This information, however, is poor and fragmented. Carbon contents were assessed in patula pine (Pinus patula) and teak (Tectona grandis) stands in tropical forest plantations of different development stages in combination with inventory assessments and soil survey information. Growth models were used to associate TOC to tree normal diameter (D) with average basal area and total tree height (HT), with D and HT parameters that can be used in 6–26 years old patula pine and teak in commercial tropical forests as indicators of carbon stocks. The information was obtained from individual trees in different development stages in 54 patula pine plots and 42 teak plots. The obtained TC was 99.6 Mg ha−1 in patula pine and 85.7 Mg ha−1 in teak forests. FFC was 2.3 and 1.2 Mg ha−1, SOC in the surface layer (0–25 cm) was 92.6 and 35.8 Mg ha−1, 76.1 and 19 Mg ha−1 in deep layers (25–50 cm) in patula pine and teak, respectively. Carbon storage in trees was similar between patula pine and teak plantations, but patula pine had higher levels of forest floor carbon and soil organic carbon. Carbon storage in trees represents 37 and 60% of the total carbon content in patula pine and teak plantations, respectively. Even so, the remaining percentage corresponds to SOC, whereas FFC content is less than 1%. In summary, differences in carbon stocks between patula pine and teak trees were not significant, but the distribution of carbon differed between the plantation types. The low FFC does not explain the SOC stocks; however, current variability of SOC stocks could be related to variation in land use history.  相似文献   

7.
Even though considerable parts of the global tropical forests are located in Africa, reliable data on African forest resources is limited. While this is widely recognized for tropical moist forests, it also holds for tropical dry forests. To partially fill the gap a forest inventory was carried out in Burkina Faso, West Africa. In this paper we present a methodological approach and sample based estimates of the tree and forest resources including estimates of (1) land cover classes, (2) species composition, and (3) above ground tree carbon stocks. Following the land classification of the Food and Agriculture Organization of the United Nations (FAO), the forest cover of Burkina Faso was estimated as 42.6% (116,847 km2). For the classes “other wooded land”, “other land” and “other land with tree cover” the estimates were 1.6%, 53.6%, and 9.1%, respectively. We found notable differences to the estimates published by FAO, in particular when considering the classes “forest” and “other wooded land” separately, but lesser so when the two classes are combined. That points to a major issue in applying these class definitions in semiarid environments. Given the relatively small sample size (n = 46 field observed plots), relative standard errors (SE%) of area estimates are high (around 9% for the larger area classes). Aboveground tree carbon stocks were estimated to be 6.640, 5.580 and 7.222 Mg ha−1 for “forest”, “other wooded land” and “other land with tree cover”, respectively (SE% around 18% for all three estimates). Availability of biomass models is very limited for all classes, in particular when it comes to shrubs. Furthermore, it was estimated that the most abundant tree species in Burkina Faso is Vittelaria paradoxa, the “shea butter tree” which is a multi-use tree species of high relevance for rural livelihoods.To our knowledge this study is the first field-based forest inventory on national level in Burkina Faso where the estimation of errors was possible on statistical grounds, and done. The results of this study revealed major issues that should be taken into account when doing similar studies, including carbon monitoring and accounting: increasing the sample size will lead to smaller standard errors (at a higher costs, of course), but will not solve the crucial points (1) of non-availability of suitable biomass models, in particular for shrub lands and (2) of implementation issues regarding the definition of land cover types.  相似文献   

8.
We compared soil organic carbon (SOC) stocks and stability under two widely distributed tree species in the Mediterranean region: Scots pine (Pinus sylvestris L.) and Pyrenean oak (Quercus pyrenaica Willd.) at their ecotone. We hypothesised that soils under Scots pine store more SOC and that tree species composition controls the amount and biochemical composition of organic matter inputs, but does not influence physico-chemical stabilization of SOC. At three locations in Central Spain, we assessed SOC stocks in the forest floor and down to 50 cm in the mineral in pure and mixed stands of Pyrenean oak and Scots pine, as well as litterfall inputs over approximately 3 years at two sites. The relative SOC stability in the topsoil (0-10 cm) was determined through size-fractionation (53 μm) into mineral-associated and particulate organic matter and through KMnO4-reactive C and soil C:N ratio.Scots pine soils stored 95-140 Mg ha−1 of C (forest floor plus 50 cm mineral soil), roughly the double than Pyrenean oak soils (40-80 Mg ha−1 of C), with stocks closely correlated to litterfall rates. Differences were most pronounced in the forest floor and uppermost 10 cm of the mineral soil, but remained evident in the deeper layers. Biochemical indicators of soil organic matter suggested that biochemical recalcitrance of soil organic matter was higher under pine than under oak, contributing as well to a greater SOC storage under pine. Differences in SOC stocks between tree species were mainly due to the particulate organic matter (not associated to mineral particles). Forest conversion from Pyrenean oak to Scots pine may contribute to enhance soil C sequestration, but only in form of mineral-unprotected soil organic matter.  相似文献   

9.
We examined the potential growth of clonal Eucalyptus plantations at eight locations across a 1000+ km gradient in Brazil by manipulating the supplies of nutrients and water, and altering the uniformity of tree sizes within plots. With no fertilization or irrigation, mean annual increments of stem wood were about 28% lower (16.2 Mg ha−1 yr−1, about 33 m3 ha−1 yr−1) than yields achieved with current operational rates of fertilization (22.6 Mg ha−1 yr−1, about 46 m3 ha−1 yr−1). Fertilization beyond current operational rates did not increase growth, whereas irrigation raised growth by about 30% (to 30.6 Mg ha−1 yr−1, about 62 m3 ha−1 yr−1). The potential biological productivity (current annual increment) of the plantations was about one-third greater than these values, if based only on the period after achieving full canopies. The biological potential productivity was even greater if based only on the full-canopy period during the wet season, indicating that the maximum biological productivity across the sites (with irrigation, during the wet season) would be about 42 Mg ha−1 yr−1 (83 m3 ha−1 yr−1). Stands with uniform structure (trees in plots planted in a single day) showed 13% greater growth than stands with higher heterogeneity of tree sizes (owing to a staggered planting time of up to 80 days). Higher water supply increased growth and also delayed by about 1 year the point where current annual increment and mean annual increment intersected, indicating opportunities for lengthening rotations for more productive treatments as well as the influence of year-to-year climate variations on optimal rotations periods. The growth response to treatments after canopy closure (mid-rotation) related well with full-rotation responses, offering an early opportunity for estimating whole-rotation yields. These results underscore the importance of resource supply, the efficiency of resource use, and stand uniformity in setting the bounds for productivity, and provide a baseline for evaluating the productivity achieved in operational plantations. The BEPP Project showed that water supply is the key resource determining levels of plantation productivity in Brazil. Future collaboration between scientists working on silviculture and genetics should lead to new insights on the mechanisms connecting water and growth, leading to improved matching of sites, clones, and silviculture.  相似文献   

10.
The high potential values of sawtooth oak (Quercus acutissima) in fuelwood or bioenergy are recognized. Sprouting ability, sprout growth, biomass production and energy stocks in coppiced plantations of sawtooth oak were evaluated at the Hongya Mountain Forest Farm in Anhui Province, China. Experimental treatments applied in a split-plot design included three sprout thinning times and four sprout numbers reserved on each stump (1 sprout, 2 sprouts, 4 sprouts stump−1 and check). Sprout growth and biomass production per stump were significantly affected by the treatments and a significant positive relationship between stump basal diameter and sprout numbers produced was observed. After the third growing season, the highest total sprout biomass per stump was achieved in the treatment with thinning excess sprouts at the end of first growing season (December, 2007) and reserving 4 dominant sprouts per stump (T12S4, reaching 8.67 kg stump−1), while the lowest was found in the treatment with thinning the sprouts in August of the first growing season and reserving 1 dominant sprout per stump (T8S1, only 3.40 kg stump−1). Different treatments also influenced gross calorific values (GCV) of the components sampled from 3-year-old sprouts and the mean GCV of stem wood on an oven-dry weight basis was within the range of 18.45 ± 0.15 and 18.83 ± 0.12 kJ g−1. Similar to the sprout biomass production, the greatest total and stem energy stocks per stump were observed in T12S4 treatment, achieving 161.6 and 110.5 MJ stump−1, respectively. Based on the results from this study, thinning excess sprouts to reserve 4 sprouts per stump as early as age 1 could be proposed for the management of sawtooth oak coppice with cutting cycle of 3-5 years and stand density of 5000-6000 stump ha−1.  相似文献   

11.
Sudden oak death (SOD), caused by the recently discovered non-native invasive pathogen, Phytophthora ramorum, has already killed tens of thousands of native coast live oak and tanoak trees in California. Little is known of potential short and long term impacts of this novel plant–pathogen interaction on forest structure and composition. Coast live oak (Quercus agrifolia) and bay laurel (Umbellularia californica) form mixed-evergreen forests along the northern California coast. This study measured tree mortality over a gradient of disease in three time periods. Direct measurements of current mortality were taken during 2004, representing a point-in-time estimate of present and ongoing mortality. Past stand conditions, c. 1994, were estimated using a stand reconstruction technique. Future stand conditions, c. 2014, were calculated by assuming that, given a lack of host resistance, live trees showing signs of the disease in 2004 would die. Results indicate that coast live oaks died at a rate of 4.4–5.5% year−1 between 1994 and 2004 in highly impacted sites, compared with a background rate of 0.49% year−1, a ten-fold increase in mortality. From 2004 to 2014, mortality rates in the same sites were 0.8–2.6% year−1. Over the entire period, in highly impacted sites, a 59–70% loss of coast live oak basal area was predicted, and coast live oak decreased from 60% to 40% of total stand basal area, while bay laurel increased from 22% to 37%. Future stand structures will likely have greater proportions of bay laurel relative to coast live oak.  相似文献   

12.
Many old-growth forest stands in northwest Pakistan have been structurally transformed as a consequence of logging and livestock grazing, some of which are thereafter left to secondary succession. These forests represent an important resource for local inhabitants who gather and sell medicinal plants as part of their livelihood. With this in mind, the main objectives of our study were: (1) to assess differences in the structure of the tree layer and the abundance of medicinal plants among differently transformed forests, (2) to evaluate the recovery potential of medicinal plants under re-growth forests, and (3) to assess relationships between tree stand structural characteristics and the occurrence of medicinal plants.The first step of the study involved creating an approximate map covering an area of 90 km2 for five forest-use types (old-growth forest, forest degraded by logging, derived woodland, agroforest and re-growth forest). Fifteen plots per forest-use type were randomly allocated at altitudes ranging from 2200 m to 2400 m asl, within which the abundance of 10 locally important medicinal herb species was assessed.The study stands differed greatly in tree basal area, which was highest in old-growth forest (48 m2 ha−1), lowest in agroforest areas (6 m2 ha−1) and intermediate in re-growth forest (20 m2 ha−1). All ten medicinal plant species were encountered in old-growth and in re-growth forests, but only five of these species also occurred on agroforest plots. The mean coverage of study medicinal plants was highest in old-growth forest (7%), low in forest degraded by logging, derived woodland and agroforest (0.3-2%), and intermediate in re-growth forest (4%). The Jaccard abundance based similarity index indicates a considerable similarity (0.6) between re-growth and old growth forest for both trees and medicinal plants. The overall abundance of medicinal plants increased with increasing tree basal area and canopy cover. The abundance of some particular species decreased; however, the most sought-after medicinal species Bergenia ciliata, Valeriana jatamansi and Viola cancescens increased with tree basal area within specific forest-use type and also across forest-use types. In conclusion, our data suggest that anthropogenic forest degradation leads to a reduction in the abundance of economically viable medicinal plants for the study region. It is further indicated that this can be reversed if degraded forests are allowed to regenerate.  相似文献   

13.
We studied the carbon density and accumulation in trees at five sites in a tropical dry forest (TDF) to address the questions: how is the TDF structured in terms of tree and carbon density in different DBH (diameter at breast height) classes? What are the levels of carbon density and accumulation in the woody species of TDF? Is the vegetation carbon density evenly distributed across the forest? Does carbon stored in the soil reflect the pattern of aboveground vegetation carbon density? Which species in the forest have a high potential for carbon accumulation? The WSG among species ranged from 0.39 to 0.78 g cm−3. Our study indicated that most of the carbon resides in the old-growth (high DBH) trees; 88-97% carbon occurred in individuals ?19.1 cm DBH, and therefore extra care is required to protect such trees in the dry forest. Acacia catechu, Buchanania lanzan, Hardwickia binata, Shorea robusta and Terminalia tomentosa accounted for more than 10 t ha−1 carbon density, warranting extra efforts for their protection. Species also differed in their capacity to accumulate carbon indicating variable suitability for afforestation. Annually, the forest accumulated 5.3 t-C ha−1 yr−1 on the most productive, wettest Hathinala site to 0.05 t-C ha−1 yr−1 on the least productive, driest Kotwa site. This study indicated a marked patchy distribution of carbon density (151 t-C ha−1 on the Hathinala site to 15.6 t-C ha−1 on the Kotwa site); the maximum value was more than nine times the minimum value. These findings suggest that there is a substantial scope to increase the carbon density and accumulation in this forest through management strategies focused on the protection, from deforestation and fire, of the high carbon density sites and the old-growth trees, and increasing the stocking density of the forest by planting species with high potential for carbon accumulation.  相似文献   

14.
Over the coming decades, climate change will increasingly affect forest ecosystem processes, but the future magnitude and direction of these responses is uncertain. We designed 12 scenarios combining possible changes in tree growth rates, decay rates, and area burned by wildfire with forecasts of future harvest to quantify the uncertainty of future (2010-2080), timber growing stock, ecosystem C stock, and greenhouse gas (GHG) balance for 67 million ha of forest in British Columbia, Canada. Each scenario was simulated 100 times with the Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3). Depending on the scenario, timber growing stock over the entire land-base may increase by 14% or decrease by 9% by 2080 (a range of 2.8 billion m3), relative to 2010. However, timber growing stock available for harvest was forecast to decline in all scenarios by 26-62% relative to 2010 (a range of 1.2 billion m3). Forests were an annual GHG source in 2010 due to an ongoing insect outbreak. If half of the C in harvested wood was assumed to be immediately emitted, then 0-95% of simulations returned to annual net sinks by 2040, depending on scenario, and the cumulative (2010-2080) GHG balance ranged from a sink of −4.5 Pg CO2e (−67 Mg CO2e ha−1) for the most optimistic scenario, to a source of 4.5 Pg CO2e (67 Mg CO2e ha−1) for the most pessimistic. The difference in total ecosystem carbon stocks between the most optimistic and pessimistic scenarios in 2080 was 2.4 Pg C (36 Mg C ha−1), an average difference of 126 Tg CO2e yr−1 (2 Mg CO2e yr−1 ha−1) over the 70-year simulation period, approximately double the total reported anthropogenic GHG emissions in British Columbia in 2008. Forests risk having reduced growing stock and being GHG sources under many foreseeable scenarios, thus providing further feedback to climate change. These results indicate the need for continued monitoring of forest responses to climatic and global change, the development of mitigation and adaptation strategies by forest managers, and global efforts to minimize climate change impacts on forests.  相似文献   

15.
We used pine (Pinus elliottii Engelm.) forests located along a short urban–rural gradient in Nanchang, China to study nitrogen (N) cycling responses to urbanization. Annual average rates of nitrification and net N-mineralization in soils (0–15 cm depth) measured from February 2007 to January 2009 increased from rural (8 and 37 kg ha−1 year−1) to suburban (69 and 79 kg ha−1 year−1) and urban sites (114 and 116 kg ha−1 year−1) (P < 0.05). Soil nitrate and mineral N pools exhibited the same spatial patterns in response to urban location. In comparison to rural sites, urban and suburban sites experienced soil microbial biomass N that increased by 98% and 38%, sucrase activity that increased by 40% and 26%, and urease activity that decreased by 35% and 25%, respectively. Soil microbial biomass C:N and free amino acids varied little along the urban–rural gradient. Foliar N concentrations and N resorption proficiencies were higher in urban (12.3 and 4.8 g kg−1) and suburban (12.3 and 6.2 g kg−1) than in rural (9.9 and 3.6 g kg−1) sites, while N resorption efficiencies (from 58% to 72%) were not statistically different. These results indicate that forests in suburban and especially in urban areas are moving rapidly towards a state of “N saturation” and increased potential N loss most likely attributable to higher N deposition to these sites.  相似文献   

16.
Uncertainty in recovery times of tropical forests can lead to mismanagement, such as in setting inappropriate harvesting rates or failing to achieving conservation targets. We use long-term plot data (17 y) to estimate recovery times of separate forest compartments, which experienced different levels of timber extraction within Kibale National Park, Uganda. We estimate that structural recovery (basal area) of heavily logged and moderately logged compartments will take respectively 112 and 95 y, when compared to adjacent mature forest. Our data suggests that recovery in terms of species composition will take significantly longer. Our estimates of structural recovery are derived from rates of change of diameter at breast height and basal area measurements which have been used traditionally as indicators of forest growth and productivity. Our results suggest that the severity of the logging has an impact on the rate of recovery, with current recovery rates estimated at 0.32 m2 ha−1 y−1 in a moderately logged compartment and 0.25 m2 ha−1 y−1 in heavily logged areas, highlighting the possible benefits of reduced impact harvesting in increasing long-term yields. We investigate how some representatives of the wildlife community were affected by differential recovery times and find that recovery times of frugivorous primate's forest habitats were 2.5 times slower when compared with folivorous primates.  相似文献   

17.
Chinese fir [(Cunninghamia lanceolata (Lamb.) Hook (Taxodiaceae)] plantations are helping to meet China's increasing demands for timber, while, at the same time, sequestering carbon (C) above and belowground. The latter function is important as a means of slowing the rate that CO2 is increasing in the atmosphere. Available data are limited, however, and even if extensive, would necessitate consideration of future changes in climatic conditions and management practices. To evaluate the contribution of Chinese fir plantations under a range of changing conditions a dynamic model is required. In this paper, we report successful outcome in parameterizing a process-based model (3-PG) and validating its predictions with recent and long-term field measurements acquired from different ages of Chinese fir plantations at the Huitong National Forest Ecosystem Research Station. Once parameterized, the model performed well when simulating leaf area index (LAI), net primary productivity (NPP), biomass of stems (WS), foliage (WF) and roots (WR), litterfall, and shifts in allocation over a period of time. Although the model does not specifically include heterotrophic respiration, we made some attempts to estimate changes in root C storage and decomposition rates in the litterfall pool as well as in the total soil respiration. Total C stored in biomass increased rapidly, peaking at age 21 years in unthinned stands. The predicted averaged above and belowground NNP (13.81 t ha−1 a−1) of the Chinese fir plantations between the modeling period (from 4 to 21-year-old) is much higher than that of Chinese forests (4.8–6.22 t ha−1 a−1), indicating that Chinese fir is a suitable tree species to grow for timber while processing the potential to act as a C sequestration sink. Taking into account that maximum LAI occurs at the age of 15 years, intermediate thinning and nutrient supplements should, according to model predictions, further increase growth and C storage in Chinese fir stands. Predicted future increases (approximately 0–2 °C) in temperature due to global warming may increase plantation growth and reduce the time required to complete a rotation, but further increases (approximately 2–6 °C) may reduce the growth rate and prolong the rotational age.  相似文献   

18.
The growth, aboveground biomass production and nutrient accumulation in black alder (Alnus glutinosa (L.) Gaertn.), silver birch (Betula pendula Roth.) and Scots pine (Pinus sylvestris L.) plantations during 7 years after planting were investigated on reclaimed oil shale mining areas in Northeast Estonia with the aim to assess the suitability of the studied species for the reclamation of post-mining areas. The present study revealed changes in soil properties with increasing stand age. Soil pH and P concentration decreased and soil N concentration increased with stand age. The largest height and diameter of trees, aboveground biomass and current annual production occurred in the black alder stands. In the 7-year-old stands the aboveground biomass of black alder (2100 trees ha−1) was 2563 kg ha−1, in silver birch (1017 trees ha−1) and Scots pine (3042 trees ha−1) stands respective figures were 161 and 1899 kg ha−1. The largest amounts of N, P, K accumulated in the aboveground part were in black alder stands. In the 7th year, the amount of N accumulated in the aboveground biomass of black alder stand was 36.1 kg ha−1, the amounts of P and K were 3.0 and 8.8 kg ha−1, respectively. The larger amounts of nutrients in black alder plantations are related to the larger biomass of stands. The studied species used N and P with different efficiency for the production of a unit of biomass. Black alder and silver birch needed more N and P for biomass production, and Scots pine used nutrients most efficiently. The present study showed that during 7 years after planting, the survival and productivity of black alder were high. Therefore black alder is a promising tree species for the reclamation of oil shale post-mining areas.  相似文献   

19.
The northern and central Appalachian forests are subject to high levels of atmospheric acid deposition (AD), which has been shown in some forests to negatively impact forest growth as well as predispose the forest system to damage from secondary stresses. The purpose of this study was to evaluate the possible contribution of AD to changes in composition and productivity of the Monongahela National Forest, and to evaluate soil-based indicators of acidification that might be useful for detecting AD-related forest changes. Soils adjacent to 30 Forest Inventory and Analysis (FIA) sites were sampled and analyzed for a suite of acidity indicators. These indicators were correlated with the periodic mean annual volume increment (PMAVI) of the forest stands on FIA plots for the 10-yr period 1989–2000. PMAVI ranged from −9.5 to 11.8 m3 ha−1 yr−1, with lower-than-expected growth (<3 m3 ha−1 yr−1) on two-thirds of the sites. In the surface horizon, effective base saturation, Ca2+ concentration, base saturation, K+ concentration, Ca/Al molar ratio, and Mg/Al molar ratio, were positively correlated with PMAVI and Fe concentration was negatively correlated with PMAVI (p ≤ 0.1). In the subsurface horizon pH(w) and effective base saturation were positively correlated and Al3− concentration and K+ concentration were negatively correlated with PMAVI. We hypothesized that NO3-N/NH4-N ratio would also be correlated with PMAVI, but it was not. Correlations between soil chemical indicators and PMAVI suggest that AD may contribute, in part, to the lower-than-expected forest growth on the Monongahela National Forest.  相似文献   

20.
The recovery process of fallow stands in the mountainous region of Northwestern Vietnam was studied, based on a chronosequence of 1–26-year-old secondary forests after intensive shifting cultivation. The number of species present in a 26-year-old secondary forest attained 49% of the 72 species present in an old-growth forest. Total stem density decreased gradually from 172,500 ha−1 in a 3-year-old forest to 24,600 ha−1 in the 26-year-old stand, but stem density of larger trees (diameter at breast height (D) ≥ 5 cm) increased from 60 ha−1 in a 7-year-old to 960 ha−1 in the 26-year-old forests, which was similar to that of an old-growth forest. Annual biomass increment of the 26-year-old stand was 4.2 Mg ha−1 year−1. A saturation curve was fitted to biomass accumulation in secondary forests. After an estimated time of 60 years, a secondary forest can achieve 80% of the biomass of old-growth forests (240 Mg ha−1). Species diversity expressed by Shannon Index shows that it takes 60 years for a secondary forest in fallow to achieve a plant species diversity similar to that of old-growth forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号