首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
菌剂与肥料配施对矿区复垦土壤白三叶草生长的影响   总被引:2,自引:0,他引:2  
采用盆栽试验研究了矿区复垦土壤菌剂与肥料的不同配施对白三叶草(Trifolium repens Linn)生长的影响。结果表明: 双接种VA 菌根真菌(Glomus mossea)和根瘤菌(Rhizobium)能显著提高白三叶草根瘤数、根瘤鲜重和固氮酶活性, 根瘤数在有机肥双接种与无机肥双接种处理之间差异不显著, 而根瘤鲜重和固氮酶活性差异显著; 肥料与各菌剂组合处理中, 有机肥双接种处理的白三叶草分枝数、干物质重最大; 在白三叶草生长40 d 和150 d 时, 双接种处理的叶片数均为各处理中最大值; 接种VA 菌根真菌、根瘤菌和双接种均可增加白三叶草根系的菌根侵染率和土壤孢子数, 总体表现为双接种处理>接种VA 菌根真菌>接种根瘤菌, 有机肥相应处理>无机肥相应处理>对照; 肥料与菌剂的配合施用可有效提高植物对土壤氮、磷、钾养分的吸收。在矿区复垦土壤上有机肥与VA 菌根真菌和根瘤菌菌剂配施能显著促进白三叶草的生长, 是提高矿区复垦土壤植被恢复中比较适宜的组合方式。  相似文献   

2.
水分胁迫及VA菌根接种对绿豆生长的影响   总被引:13,自引:0,他引:13  
本文采用土培试验研究了水分胁迫下接种VA菌根真菌Glomusmosseae,G .sp .和G .caledonium对绿豆生长及代谢活动的影响。结果表明 ,水分胁迫严重抑制了植株的生长 ,但对VA菌根真菌的侵染能力影响不大。接种VA菌根真菌不仅有利于植株对土壤中磷和氮的吸收 ,而且明显改善了植株的水分状况 ,降低了植株叶片的脯氨酸含量 ,提高了接种株叶片的光合效率 ,显著增加了植株干物质量 ,增强了绿豆的抗旱性或耐旱性。 3种真菌中 ,以Glomusmosseae的接种效果最好。  相似文献   

3.
VA菌根对冬小麦利用养分和水分的影响   总被引:13,自引:0,他引:13  
本文采用土培试验研究了水分胁迫状况下接种VA菌根真菌对冬小麦生长发育、养分吸收和水分利用的影响 .试验结果表明 :水分胁迫严重地抑制了植株地上部及根系的生长 ,影响了植株对养分的吸收利用 ;接种VA菌根真菌的植株体内氮磷营养状况得到改善 ,减轻了水分胁迫对植株生长的抑制程度 ,提高了干物质的累积 .因此 ,接种VA菌根真菌提高了冬小麦的抗旱性、促进了植株生长 ,并增加了根 /冠比值 .试验结果还表明 ,接种VA菌根真菌可增加冬小麦对水分的有效利用 ,提高了水分利用效率  相似文献   

4.
VA菌根对绿豆(Phaseolus aureus)生长及水分利用的影响   总被引:21,自引:1,他引:21  
以绿豆作为实验植物,通过含水量不同的三个等级进行砂培,研究了VA菌根对寄主植物的生长和水分利用的影响.实验结果表明,接种VA菌根不仅有利于植物对磷的吸收,促进植物的生长,而且显著提高了水分的利用效率.接种菌根的绿豆制造1克干物质所需的水分大约是未接种的对照植株所需水分的一半,大大提高了水分的利用率.  相似文献   

5.
接种丛枝菌根真菌(AMF)能显著促进大豆生长和对磷的吸收,但不同磷效率基因型大豆对AMF接种的响应还少有报道。为探究接种AMF对不同磷效率基因型大豆生长和磷转运基因表达的影响,以磷高效大豆BX10和磷低效大豆BD2为试验材料进行盆栽试验,设置接菌和不接菌处理,对大豆干重、菌根侵染性状、氮磷养分含量、根系性状,以及菌根诱导的磷转运基因表达进行了分析。结果表明, AMF接种显著促进了大豆的磷吸收,并且接菌效果存在显著的基因型差异,接种AMF显著增加了BD2的地上部干重、磷含量以及植株总磷吸收量,但只增加了BX10的地上部磷含量和总磷吸收量,对植株地上部干重没有显著影响。无论接种与否,BD2的地上部磷含量均显著高于BX10,表明磷低效的BD2具有较高的植株体内磷转运能力。不接菌条件下,两个大豆基因型根系性状无显著差异;接种AMF后BX10的根系体积和根系平均直径均显著高于BD2。BD2的菌根生长反应(MGR)和菌根磷反应(MPR)均显著高于BX10,对菌根依赖性更高。此外,在接菌处理的BD2根系,代表菌根途径磷吸收的磷转运基因GmPT8、GmPT9和GmPT10表达均显著高于BX10;相应地,BD2的总磷吸收量也显著高于BX10。以上结果表明,接种AMF对促进磷低效大豆BD2生长和磷吸收的作用更大,这可能主要是由于BD2菌根途径的磷吸收量较高,体内磷转运效率较高。以上结果将为研究AMF接种对磷吸收的贡献提供理论依据。  相似文献   

6.
在非灭菌土壤条件下施用磷肥对VA菌根效应的影响   总被引:8,自引:0,他引:8  
林先贵  郝文英 《土壤学报》1989,26(2):179-185
本文对中国科学院黄淮海平原综合治理封丘试区的四种不同类型潮土作了田间调查、微区试验以及盆裁试验.试验结果一致表明在这四种类型土壤中施用相当于每亩8斤P2O3的过磷酸钙最有利于VA菌根真菌的侵染,在适磷条件下接种菌根后可促进菌根菌侵染,缩短其侵染迟缓期,促进了植物对磷的吸收,从而也增加了植物地上和地下部分的生长.  相似文献   

7.
丛枝菌根真菌对红三叶草利用不同有机磷源的研究   总被引:5,自引:3,他引:5  
以红三叶草为材料 ,利用三室隔网培养方法 ,施用不同有机磷源 :植酸钠 (Na -Phytate)、核糖核酸 (RNA)和卵磷脂 (Lecithin) ,研究接种菌根真菌Glmous versiforme对土壤及外加有机磷源的利用效率 ,另设无机磷及不施磷作为对照。结果表明 ,接种菌根真菌能明显增加植株干物重、含磷量和吸磷总量。与各有机磷处理相比 ,无机磷处理前期的生长效应较好 ,施用有机磷各处理在不同生长时期均明显促进了植株生长 ,但不同有机磷源之间没有显著差异。在植株吸磷量上 ,植株生长 7周以前 ,磷酸二氢钾处理高于其它处理 ,而植株生长 10周时 ,植酸钠处理高于磷酸二氢钾处理。接种菌根处理由于丛枝菌根活化了土壤有机磷 ,到植株生长 10周时其吸收有机磷的量已占吸磷总量的 76 .7%。  相似文献   

8.
接种丛枝菌根真菌对脱毒马铃薯微型薯生长及产量的影响   总被引:2,自引:1,他引:1  
在大田条件下采用混合菌种(Glomus mosseas+Glomus intraradices)作为接种剂,研究了接种丛枝菌根真菌对脱毒马铃薯微型薯菌根侵染、磷吸收和产量的影响。结果表明,接种菌根真菌,马铃薯菌根侵染率增加73.3%,植株吸磷量增加15.4%,块茎产量增加8.0%。上述结果证明,在大田条件下,接种菌根真菌能侵染马铃薯根部,促进植株对磷的吸收,从而增加产量。  相似文献   

9.
丛枝菌根真菌对西藏高原固沙植物吸磷效率的影响   总被引:3,自引:0,他引:3  
采用盆栽方法,就外源菌种、土著菌种(含混合菌种)对固沙植物白草(Pennisetum.flaccidum)生长和吸磷效率的影响进行了研究。结果表明,白草具有较高的菌根依赖性(平均达166.4%);不同AM真菌(或真菌组合)对白草根系均具显著的侵染效应。随菌根侵染率的提高,植株生物量、吸磷量均呈显著增加(相关系数分别为0.7465*、0.6000*);菌根菌丝对白草吸收土壤磷素的贡献十分明显,各接种处理菌根菌丝对植物吸收土壤磷素的贡献量、贡献率分别在3.2~11.6.mg/pot和61.5%~85.3%之间;接种菌根处理植株吸磷量呈Glomus.intraradicesG.mosseae+G.etunicatum+G.intraradices+Scutellospora.erythropaG.mosseae(外源菌种)G.mosseae+G.intraradices+Scutellospora.calosporaG.mosseae-I(土著菌种)G.etunicatum的趋势。此外,不同AM真菌对寄主植物地上部、根部生物量和吸磷量的影响程度明显不同,一般呈地上部根系的趋势,但寄主植物根系的生长速率相对较快;土著菌种中,多菌混合接种对寄主植物的侵染效应明显高于单一接种。  相似文献   

10.
根瘤菌和AM真菌对紫花苜蓿结瘤和产质量的影响   总被引:2,自引:0,他引:2  
刘忆  袁玲 《土壤学报》2020,57(5):1292-1298
了解酸性土壤条件下紫花苜蓿(Medicago sativa)接种中华根瘤菌(Sinorhizobium medicae,SM)和丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)的作用,有益于扩大西南地区牧草种植,促进牧业发展。选择当地典型、有代表性的酸性黄壤,设置不接种(CK)、接种SM(SM)、接种AMF(AMF)、混合接种(SM+AMF)四个处理,通过微区试验研究SM与AMF对紫花苜蓿生长、品质、根系结瘤和植株养分吸收等的影响。结果表明:在SM+AMF处理中,菌根真菌感染率和结瘤数分别较单接种提高,但根瘤单重显著减少,固氮效率和吸磷能力增加,其牧草产量、粗蛋白、粗脂肪、灰分、氮、磷、钾、钙、镁积累量均显著高于其他处理,表现出SM与AMF的协同效应。与CK相比,SM或AMF处理均促进苜蓿生长,提高牧草产量,改善品质,但SM和AMF处理之间无显著差异。在SM处理中,地上部氮含量和氮、磷、钾积累量高于CK,植株氮积累量高于AMF。在AMF处理中,其根系活力显著高于SM处理,有益于养分吸收,可解释植株磷、钾、钙、镁含量和积累量高于SM的原因。因此,SM和AMF均能不同程度地促进氮、磷、钾吸收,提高牧草产量品质。在西南酸性土壤上种植紫花苜蓿时,接种根瘤菌和菌根真菌尤其进行混合接种有益于提高牧草的产量和品质。  相似文献   

11.
Abstract

A greenhouse experiment was carried out to investigate the influence of Glomus clarum (mycorrhiza) on the growth of tomato seedlings grown in both sterilized and non-sterilized soils. Highest growth parameter values were recorded in tomato plants inoculated with mycorrhiza but grown in sterilized soil, followed by those grown in non-sterilized soil but inoculated with mycorrhiza also. Sterilized but non-inoculated tomato plants also had growth and were closely followed by non-sterilized, non-inoculated tomato plants. There was no significant difference in all the treatments when girth of the tomato plants used was measured in this study. Nutrient uptake (N,P,K) was significantly found highest in the inoculated sterilized tomato plants while it was found lowest in the non-sterilized, non-inoculated tomato plants. Generally, mycorrhizal-inoculated tomato plants (whether sterilized or non-sterilized) showed better growth in all the treatments used.  相似文献   

12.
Soybean (Glycine max L.) cropping is increasing in marginal environments, including water-limited lands, some of which are loaded with arsenic (As). Plants inoculated with mycorrhiza increased their tolerance to water stress. We studied the effect of a sudden and severe water stress on soybean inoculated with the mycorrhizal fungus Glomus intraradices in soils with increasing concentrations of As. Soybean plants were grown in greenhouse with adequate water supply for 60 days. Irrigation was stopped completely and soil abruptly reached the permanent wilting point. Most inoculated plants survived under such limiting water stress, but noninoculated plants were clearly affected. Arsenic showed a negative effect on plant growth but improved plant survival under this severe water stress. It seems that the negative effects of As on plant water equilibrium explain why plants affected by As survived extreme water stress events.  相似文献   

13.
A glasshouse study was conducted to investigate the effects of soil temperatures of 20, 15 and 10°C on growth and phosphorus (P) uptake of barley (Hordeum vulgare L. cv. Galleon) inoculated with Glomus intraradices Schenck & Smith. Vesicular‐arbuscular (VA) mycorrhiza formation was significantly reduced as the soil temperature decreased. Plant growth depression due to temperature stress was more pronounced in mycorrhizal plants than in non‐mycorrhizal plants. The lower the soil temperature, the higher was the root‐shoot ratio. The ratio was also higher in non‐mycorrhizal plants than in mycorrhizal plants. Concentration of P in roots was influenced by mycorrhiza. Significant interaction between mycorrhiza and soil temperature was observed for root dry matter and specific P uptake (P uptake per unit weight of root). Compared to non‐mycorrhizal plants, specific P uptake in mycorrhizal plants was higher.  相似文献   

14.
Aims : The aim of this study was to explore interactive effects between quality (types) and quantity (application rates) of biochar as well as of arbuscular mycorrhiza (AM) symbiosis on the growth of potato plants. Methods : A low P sandy loam soil was amended with 0%, 1.5%, or 2.5% (w/w) of either of 4 types of biochar, which were produced from wheat straw pellets (WSP) or miscanthus straw pellets (MSP) pyrolyzed at temperatures of either 550°C or 700°C. Potato plants grown in pots containing the soils or soil biochar mixture were inoculated with or without AM fungus (AMF), Rhizophagus irregularis. The experiment was carried out under fully irrigated semi‐field conditions and plants were harvested 101 days after planting. Results : Application of high temperature biochar decreased growth, biomass and tuber yield of potato plants, while the low temperature biochar had a similar effect on yield as plants grown without biochar amendment. Total biomass of potato plants were decreased with the increasing rate of biochar. Arbuscular mycorrhizal fungus inoculation stimulated the growth of potato plants in all organs, increased tuber biomass significantly in 1.5% MSP700 amended plants, and to a lesser degree for WSP700, MSP550, and WSP550. In addition, plant biomass gain was linearly related to N, P, and K uptake, the ratio of P to N in the leaf of plants indicated that all treatments were mainly P‐limited. A multiple linear regression using P uptake and biochar rate as independent variables explained 91% of the variation in total biomass. The single effect of AMF inoculation, type and rate of biochar affected plant N, P and K uptake similarly. While AMF inoculation significantly increased P uptake in potato plants grown in soil with WSP700 or MSP700 despite of the rate of biochar. In general, application of biochar significantly increased AMF root colonization of potato plants. Conclusions : The application of MSP550 at 1.5% combined with AMF stimulated growth of potato the most. Furthermore, the results indicated that the interactive effect of AMF inoculation, biochar type and application rate on potato growth to a large extent could be explained by effects on plant nutrient uptake.  相似文献   

15.
Lonicera confusa, a traditional Chinese medicine herb for treating cold, flu, acute fever, and so forth, is often grown artificially in acidic soils and suffers from phosphorus (P) deficiency. A five-year field experiment was carried out to study the colonization rate, growth, nutrition, and chlorogenic acid content of Lonicera confusa seedlings inoculated with arbuscular mycorrhizal (AM) fungi, Glomus etunicatum and Glomus intraradices. Before transplanting into a field, both AM-inoculated and uninoculated control plants were cultured in nursery beds. In the plants inoculated with the AM fungi, the colonization rate decreased linearly with time and a greater decrease was observed in the plants inoculated with G. intraradices than with G. etunicatum, while the AM colonization increased from 0% to 12.1% in the uninoculated control plants 5 years after transplanting. Plant height, crown diameter, number of new branches, and flower yield increased significantly by AM inoculation as compared to the uninoculated control. Phosphorus concentrations in leaves and flowers increased, and plant uptake of nutrients, e.g., nitrogen (N), P, and potassium (K), was also enhanced significantly by AM inoculation. The Lonicera confusa seedlings had a better response to inoculation of G. intraradices than G. etunicatum in both growth and chlorogenic acid content in flowers. In contrast, both plant P uptake and P concentrations in leaves and flowers were similar between two fungal inoculations. The positive responses of Lonicera confusa to AM inoculation in growth, nutrient uptake, flowering, and chlorogenic acid content in flowers suggested that AM inoculation in nursery beds could promote the plant growth and increase chlorogenic acid content in flowers of Lonicera confusa when grown on acidic and P-deficient soils.  相似文献   

16.
Deficiency of molybdenum (Mo) in acid soils causes poor growth of pulses. An experiment was, therefore, conducted in greenhouse to study the effect of Mo, phosphorus (P), and lime application on the dry matter yield and plant Mo concentration of lentil (Lens esculenta L.) in two Mo‐deficient acid alluvial soils. The experiment was conducted using a factorial design with three levels of lime (no lime, half, and full lime requirement), three levels of P (0, 25, and 50 mg kg‐1), and two levels of Mo (0 and 1.0 mg kg‐1). Plants were grown for 60 days and at harvest their dry matter yield and Mo concentration were recorded. The three treatments significantly increased dry matter yield, Mo concentration and Mo uptake, the increase being most pronounced with Mo application followed by lime and P. Increases due to applied Mo were greater in presence than in absence of added P; while the reverse was true with the liming treatments. Liming and P application at their lower levels also interacted positively for better Mo nutrition of plants. Results thus indicated that the severity of Mo deficiency in the lentil plants may be reduced by lime and P application in Mo‐deficient acid alluvial soils.  相似文献   

17.
Plants show different growth responses to N sources supplied with either NH4+ or NO3-.The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus,particularly in alkaline soils.The plant growth,P uptake,and P availability in the rhizosphere of oat (Arena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4+-N,sole NO3--N,or a combination.Sole NO3-fed oat plants accumulated more biomass than sole NH4+-fed ones.The highest biomass accumulation was observed when N was supplied with both NH4+-N and NO3--N.Growth of the plant root increased with the proportion of NO3-in the cultural medium.Better root growth and higher root/shoot ratio were consistently observed in NO3--fed plants.However,root vigor was the highest when N was supplied with NO3-+NH4+.NH4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source.No P deficiency was observed,and plant P concentrations were generally above 2 g kg-1.P uptake was increased when N was supplied partly or solely as NO3--N,similarly as biomass accumulation.The results suggested that oat was an NO3-prcferring plant,and NO3--N was essential for plant growth and the maintenance of root absorption capacity.N supply with NH4+-N did not improve P nutrition,which was most likely due to the absence of P deficiency.  相似文献   

18.
Plants show different growth responses to N sources supplied with either NH4+ or NO3-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Avena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4+-N, sole NO3--N, or a combination. Sole NO3--fed oat plants accumulated more biomass than sole NH4+-fed ones. The highest biomass accumulation was observed when N was suppliedw ith both NH4+-N and NO3--N. Growth of the plant root increased with the proportion of NO3- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3--fed plants. However, root vigor was the highest when N was supplied with NO3-+NH4+. NH4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg-1. P uptake was increased when N was supplied partly or solely as NO3--N, similarly as biomass accumulation. The results suggested that oat was an NO3--preferring plant, and NO3--N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4+-N did not improve P nutrition, which was most likely due to the absence of P deficiency.  相似文献   

19.
Arbuscular mycorrhizal fungi (AMF) have the capability to improve crop yields by increasing plant nutrient supply. A pot experiment was conducted under natural conditions to determine the response of AMF inoculation on the growth of maize (Zea mays L.), sorghum (Sorghum bicolor L.), millet (Pennisetum glaucum L.), mash bean (Vigna mungo L.), and mung bean (Vigna radiata. L.) crops during 2008. The experiment was conducted as a completely randomized design in three replications using phosphorus (P)–deficient soil. Three plants were grown in 10 kg soil up to the stage of maximum growth for 70 days. Spores of AMF were isolated from rhizosphere of freshly growing wheat and berseem crops and mixed with sterilized soil with fine particles. Crops were inoculated in the presence of indigenous mycorrhiza with the inoculum containing 20 g sterilized soil mixed with 40–50 AMF spores. Inoculation with AMF improved yield and nutrient uptake by different crops significantly over uninoculated crops. Inoculated millet crop showed 20% increase in shoot dry matter and 21% in root dry matter when compared with other inoculated crops. Increases of 67% in plant nitrogen (N) and iron (Fe) were observed in millet, 166% in plant P uptake was observed in mash beans, 186% in zinc (Zn) was measured in maize, and 208% in copper (Cu) and 48% in manganese (Mn) were noted in sorghum crops. Maximum root infection intensity of 35% by AMF and their soil spore density were observed in millet crop followed by 32% in mash beans. Results suggest that inoculation of AMF may play a role in improving crop production and the varied response of different crops to fungi signifies the importance of evaluating the compatibility of the fungi and plant host species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号