首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
杜仲AFLP反应体系的建立及优化   总被引:1,自引:0,他引:1  
【目的】建立并优化适合杜仲的AFLP技术体系,为进一步构建其遗传图谱及开展分子标记辅助育种奠定基础。【方法】对杜仲基因组DNA提取方法、酶切与连接体系、预扩增和选择性扩增程序的影响因素进行分析,并对适合杜仲AFLP分析的引物组合进行筛选。【结果】模板DNA的提取采用改进的CTAB法,酶切模板DNA用量500 ng,酶切时间6 h,连接反应时间6 h,预扩增产物最适稀释倍数30倍。同时筛选出E-AAG+M-CAA,E-AAG+M-CAT,E-AAG+M-CTA,E-AAG+M-CTG,E-ACA+M-CAA,E-ACA+M-CTA,E-ACC+M-CTG共7对适合杜仲AFLP分析的引物组合。【结论】经重复验证,建立的AFLP反应体系适用于杜仲的AFLP分析。  相似文献   

2.
从草珊瑚(Sarcandra glabra)的幼嫩叶片中提取基因组DNA,建立草珊瑚AFLP反应体系,对AFLP反应体系中模板DNA的浓度、基因组DNA的双酶切时间、预扩增产物的稀释倍数和引物组合的筛选等关键因素进行摸索.优化的草珊瑚AFLP反应体系为模板DNA的用量20 ng/μL、酶切反应时间4h、预扩增产物稀释15倍,初步筛选出8对较为适合草珊瑚AFLP分析的引物组合.  相似文献   

3.
基于毛细管电泳的柳树AFLP分子标记研究   总被引:2,自引:0,他引:2  
为构建柳树遗传图谱、进行分子育种等奠定基础,以柳树为材料,基于毛细管电泳技术体系建立并优化了AFLP分子标记技术,简化了AFLP分析流程。首先提取高质量的柳树基因组DNA,对基因组进行酶切与接头连接、预扩增和选择性扩增,最后通过毛细管电泳分析各因素的影响。基因组DNA提取采用改进的CTAB法,酶切模板DNA用量450 ng,EcoRⅠ酶切2 h,MseⅠ酶切2 h,接头过夜连接,选择性扩增时dNTP浓度0.3 mmol/L,Mg 2+ 浓度1.5 mmol/L,引物浓度0.125 μmol/L,DNA聚合酶浓度0.025 U/μL,预扩增产物最适稀释倍数20倍。经过重复实验,证明建立的AFLP 毛细管反应体系适用于柳树AFLP分析。   相似文献   

4.
[目的]建立一套适合大竹蛏的AFLP分子标记反应体系,为大竹蛏的遗传多样性研究提供技术支持。[方法]采用比较实验法,以大竹蛏基因组DNA为模板,对其AFLP体系中的酶切时间、预扩产物稀释倍数及选扩引物E+3/M+3的配比等进行优化。[结果]优化的AFLP体系为:酶切时的DNA模板浓度为100 ng/μl,双酶切2 h;预扩模板最佳用量1.0μl;预扩产物的最适稀释倍数为40倍;选扩引物浓度配比为1∶4。同时,筛选出12对引物组合,可用于大竹蛏的AFLP分析。[结论]采用优化的AFLP反应体系及筛选后的引物,对大竹蛏群体进行了初步扩增,得到了清晰的电泳图谱。  相似文献   

5.
栓皮栎AFLP反应体系的建立   总被引:1,自引:0,他引:1  
以栓皮栎叶片为材料,研究了AFLP反应体系中酶切-连接反应的方法与时间、预扩增反应和选择性扩增反应等几个关键因素。建立一套适于栓皮栎基因组的AFLP反应体系:基因组DNA的提取宜采用改良的CTAB法;酶切-连接反应体系采用一步法,其中DNA模板用量为200ng,酶切-连接反应4h;酶切-连接产物用于预扩增反应的最佳稀释倍数为20倍;预扩增产物不需要进行稀释直接用作选择性扩增反应。对各环节的效果检测与引物筛选验证表明该体系适合栓皮栎的AFLP分析。  相似文献   

6.
以采自广西、云南和河南等地的紫薇属Lagerstroemia植物紫薇L.indica,南紫薇L.subcostata,福建紫薇L.limii和桂林紫薇L.guilinensis叶片为材料,利用改良CTAB(十六烷基三甲基溴化铵)法提取叶片基因组DNA,获得了高质量的紫薇叶片DNA,并以其基因组DNA为模板进行了酶切连接,利用酶切连接的产物稀释一定倍数作为预扩增的模板,最后以稀释一定倍数的预扩增产物进行选择性扩增,进行紫薇和南紫薇的AFLP(扩增片段长度多态性)银染反应体系的优化。AFLP体系中每一步反应都设置了不同的反应体系,采用了160对引物作为初选引物,筛选出了10对适合紫薇基因组扩增的引物。结果表明,适宜紫薇基因组扩增的最佳酶切、预扩增和选择性扩增体系为:酶切连接体系1;预扩体系3;选扩体系3,反应体系中Mg2+质量浓度为1.2×10-6kg.L-1时扩增效果较好。  相似文献   

7.
以2个马铃薯品种为材料,对AFLP反应过程中的关键因素(DNA浓度、酶切体系、扩增体系等)进行了优化,旨在建立适合马铃薯的EcoRⅠ/MseⅠ内切酶组合的AFLP反应体系和筛选扩增条带丰富的引物。结果发现,优化的马铃薯AFLP反应体系为37℃酶切4 h,37℃连接4 h,连接产物稀释10倍用于预扩增,预扩增产物稀释30倍用于选择性扩增。利用建立的优化反应体系,以10个甘肃省主栽马铃薯品种为材料,从256对引物组合中筛选出24对扩增条带多、条带清晰、多态性好的引物组合。  相似文献   

8.
黄瓜基因组DNA提取及AFLP体系优化研究   总被引:2,自引:1,他引:1  
[目的]提取黄瓜基因组DNA,并对AFLP体系进行优化。[方法]以黄瓜嫩叶为材料,利用改进的CTAB法提取高质量的黄瓜叶片总DNA,通过优化酶切连接、预扩增、选择性扩增等试验条件建立适合黄瓜的AFLP银染体系,得到清晰的黄瓜AFLP指纹图谱。[结果]DNA 模板的质量影响酶切以及后续的连接扩增反应,改良的CTAB 提取法可用于黄瓜AFLP 分析,形成清晰的AFLP 指纹。优化的酶切连接体系为:以37 ℃酶切连接12 h为宜,酶切连接的基因组DNA用量为200 ng,预扩增时Taq酶用量为0.5 U/20 μl体系,预扩增产物稀释40倍作为选择性扩增的模板。在此优化的体系下引物E41M47扩增出清晰的条带。[结论]为黄瓜品种的分子标记和黄瓜品种间亲缘关系等研究奠定了基础。  相似文献   

9.
为了将AFLP技术应用到企鹅珍珠贝相关研究中,以企鹅珍珠贝为材料,采用SDS-CTAB改进法DNA提取高质量的基因组DNA,通过对AFLP双酶切体系、连接体系、预扩增体系及选择性扩增体系中关键因素进行优化,建立了适用于企鹅珍珠贝的AFLP反应体系.同时以3个企鹅珍珠贝地理群体为材料,采用新建立AFLP反应体系从256对引物组合中筛选出10对多态性高的AFLP引物组合,说明建立的优化体系可用于企鹅珍珠贝的AFLP分析.  相似文献   

10.
本文以青稞为材料,对AFLP酶切连接、预扩增、选择性扩增过程进行优化。结果表明,酶切反应条件为DNA模板200 ng、限制性内切酶Eco RI/Mse I 4U、酶切时间4h;连接反应条件为连接温度16℃,T4连接酶3 U,连接时间12 h以上;预扩增反应条件为r Taq聚合酶3 U、dNTP 4 mmol/L、镁离子浓度1.00 mmol/L;选择性扩增反应条件为r Taq聚合酶4 U、d NTP 4 mmol/L、镁离子浓度1.25 mmol/L及预扩产物稀释10倍。利用优化后的AFLP体系,以藏青2000、冬青18这2个供试材料的基因组为模板,从100对引物组合中筛选出10对重复性好、稳定性强、扩增条带清晰、分布均匀、多态性高的引物组合,为青稞种质资源鉴定及遗传多样性分析提供了基础。  相似文献   

11.
嵩草AFLP分析体系的建立及引物筛选   总被引:1,自引:0,他引:1  
【目的】建立一套适用于嵩草的AFLP技术体系。【方法】参考前人在其他物种上的研究结果,对嵩草AFLP体系的影响因素(包括模板DNA的制备、MseⅠ/EcoRⅠ以及T4 DNA连接酶的浓度、反应时间以及反应体系的组成等)进行研究,建立适用于嵩草的AFLP分析体系,并对引物进行了筛选。【结果】用于酶切的嵩草基因组DNA模板以600 ng为宜,连接最适反应时间为10 h,预扩增产物最适稀释倍数为5倍。E-ACC+M-CAG、E-ACA+M-CAG和E-ACA+M-CTG 3对引物均适合于嵩草AFLP分析,其中以E-ACA+M-CAG引物组合效果最佳,扩增出101条多态性带,多态性带比率为99.02%。【结论】建立的AFLP技术体系可用于嵩草AFLP分析,用该体系可得到条带清晰多态性好的嵩草AFLP指纹图谱。适合嵩草种质资源研究的引物组合有E-ACC+M-CAG,E-ACA+M-CAG和E-ACA+M-CTG,其中E-ACA+M-CAG组合的效果最好。  相似文献   

12.
燕山板栗叶片基因组AFLP反应体系建立   总被引:1,自引:0,他引:1  
该文以燕山板栗嫩叶为材料,利用改良的CTAB法提取高质量的总DNA,通过优化了酶切连接、预扩增、选择性扩增等试验条件,得到了清晰的板栗AFLP指纹图谱.研究结果表明:① 应用经过改良的CTAB法可获得用于构建板栗AFLP体系的高质量DNA;②单独酶切和单独酶连体系比酶切酶连共体系效果更好,确定了板栗基因组DNA AFLP分子标记反应体系;③在所分析的9种引物组合中EAAC+M-CAA、E-AAC+M-CAT和E-AGT+M-CAT 3个引物均获得较好的多态性.其中以E-AGT+M-CAT引物对组合的扩增条带信号强度一致性好,条带分布均匀,得到了稳定、清晰、分辨率较高的指纹谱带.   相似文献   

13.
以柱花草奥克雷品种为材料,采用改良的CTAB法提取基因组DNA,对影响AFLP反应体系的主要因素进行了优化,建立了柱花草的AFLP反应体系。结果表明:20μL为最佳反应体系,酶切体系中DNA模板量为1000ng,用5 U EcoR I 37℃酶切2 h、5 U Mse I 65℃酶切2 h效果最佳;分别取5μL酶切液、1μL T4连接酶(5μL/L)、1μL EcoR I接头、1μL Mse I接头、2μL缓冲液(T4DNA酶自带),于22℃下连接10 min效果最佳;预扩增体系中模板稀释15倍、Mg2+浓度为0.75 mmol/L、Taq酶用量为1 U、dNTPs浓度为0.2 mmol/L、引物浓度为2 ng/μL效果最佳;选择扩增体系中模板稀释20倍、Mg2+浓度为1.25 mmol/L、Taq酶为1 U、dNTPs浓度为0.225 mmol/L、引物浓度为0.4 ng/μL效果最佳。利用热研5号、奥克雷2个品种对8对引物组合进行筛选,筛选出46对引物组合,为利用AFLP标记对柱花草进行分子生物学研究及分子育种奠定基础。  相似文献   

14.
以鲤科鱼类建鲤为材料,对扩增片断长度多态性(AFLP)反应体系进行优化,建立适合于鲤鱼的AFLP反应体系.通过对AFLP常规流程中基因组DNA提取、酶切.连接、预扩、选扩及电泳-银染过程的优化,初步建立了适合鲤鱼的AFLP分析体系:采用鲤血细胞DNA提取;MseI和EcoRI 37 ℃双酶切5 h;预扩引物为E+A和M+C;选扩引物E+3与M+3浓度配比为1:8,为提高引物与模板的结合效率,选扩程序均采用touch-down程序;最后结合经典AgNO3-Na2CO3银染显色.通过优化的AFLP程序,从64对引物中筛选出8对多态性引物,为进一步的鲤鱼种质资源研究奠定基础.  相似文献   

15.
【目的】建立悬铃叶苎麻植物AFLP反应体系,为其无融合生殖的分子标记及构建遗传图谱提供技术支持。【方法】以悬铃叶苎麻叶片为材料,采用改良CTAB法提取基因组DNA,并对酶切与连接体系、预扩和选扩程序进行探索,建立一套优化的AFLP反应体系。【结果】通过对EcoRⅠ+NNN/MseⅠ+NNN的64对引物组合的筛选,获得了清晰的选择性扩增图谱和多态性较高的引物组合。【结论】经多次重复验证,建立的优化体系可用于悬铃叶苎麻的AFLP分析。  相似文献   

16.
[目的]建立和优化华北落叶松(Larixprincipis-rupprechtii Mayr.)的AFLP反应体系。[方法]以华北落叶松为材料,对其AFLP分析过程中的5个主要影响因素(酶切时间、内切酶用量、DNA模板用量、连接产物和预扩增产物稀释倍数)进行了研究。[结果]确立了适于华北落叶松AFLP分析的最佳反应体系,即在反应体积均为20.0μl的前提下,酶切时间为7 h(37℃3.5 h;65℃3.5 h),EcoRⅠ和MseⅠ内切酶用量均为1 U,DNA模板用量为3.0μl(50 ng/μl),连接产物稀释10倍取5.0μl用于预扩增,预扩增产物稀释70倍取4.0μl用于选择性扩增。[结论]采用该体系得到的电泳条带清晰可辨、多态性好、重复性强,可用于对华北落叶松遗传多样性和分子进化特征的深入研究。  相似文献   

17.
沙棘木蠹蛾AFLP引物筛选及反应体系的建立   总被引:2,自引:1,他引:2  
该文以沙棘木蠹蛾幼虫为材料,用改进的SDS-蛋白酶K法获得了高质量的符合AFLP分析要求的基因组DNA。通过对AFLP试验过程中的酶切 连接、预扩增、选择性扩增等各关键因素的比较研究,建立了一套优化的沙棘木蠹蛾AFLP分子标记体系,获得了清晰的指纹图谱。研究结果表明:利用EcoRⅠ/MseⅠ双酶切系统以酶切 连接2~4 h, 预扩增产物稀释20倍、Mg 2+浓度为1.5 mol/mL的选择性扩增效果最好。进一步利用该反应体系从80对E+3 /M+3选择性引物中筛选出10对多态性丰富、分辨率高、谱带清晰的引物组合。该研究结果为利用AFLP标记技术开展沙棘木蠹蛾的种群遗传结构、遗传分化等方面的研究奠定了基础。   相似文献   

18.
以杞柳F1群体为试验材料,采用改良的CTAB法提取基因组DNA,经过酶切、连接、预扩增和选择性扩增,建立杞柳AFLP的反应体系,筛选EcoRI和MseI各16条选择性扩增引物组成256对引物组合。结果表明:320 ng基因组DNA采用5U EcoRI和MseI双酶切6 h,20℃连接12 h,连接产物稀释10倍进行预扩增,预扩增产物稀释15倍进行选择性扩增,选择性扩增产物采用ABI-3130检测,可获得条带清晰的指纹图;从256对引物组合中共筛选出98对多态性较高的引物组合。  相似文献   

19.
瓜实蝇[Bactrocera cucurbitae(Coquillett)]是中国重要的蔬菜害虫,但其DNA甲基化研究尚未见报道。甲基化敏感扩增多态性是研究DNA甲基化的重要技术之一。通过对酶切反应、连接、PCR扩增和引物筛选等条件优化,建立瓜实蝇MSAP反应体系,即:120μL酶切体系中加入10 U的限制性内切酶与600 ng基因组DNA,于37℃酶切反应过夜;220μL连接体系中加入T4连接酶1 U,HpaⅡ-MspⅠ-adapter接头50 pmol,Eco R I-adapter接头5 pmol,并于16℃反应12 h;3连接产物稀释后进行PCR预扩增和选择性扩增,再经6%变性聚丙烯酰胺凝胶电泳和银染检测结果。通过该体系筛选出适用于瓜实蝇基因组DNA甲基化多态性研究的6对引物;瓜实蝇MSAP体系为瓜实蝇的表观遗传学研究提供了技术支持。  相似文献   

20.
板栗叶片DNA的提取及AFLP反应体系的建立   总被引:19,自引:1,他引:19  
以初展开的板栗嫩叶为材料,利用改进的CTAB法,提取到高质量的板栗叶片总DNA。通过优化酶切连接、预扩增、选择性扩增等试验条件,建立了板栗AFLP银染反应体系,得到了清晰的板栗AFLP指纹图谱。为板栗品种的分子标记和板栗品种间亲缘关系等研究奠定了基础。研究结果表明:①DNA模板的质量影响酶切以及后续的连接扩增反应。以初展开的嫩叶提取的板栗叶片总DNA纯度最高,所含蛋白质、小分子杂质少,改良的CTAB提取法可用于板栗AFLP分析,形成清晰的AFLP指纹。②先进行酶切后再进行酶连的反应体系比酶切酶连一起进行的体系效果更好。板栗基因组DNA最佳酶切反应体系为:模板DNA总量500ng,反应体积为25μl,10×Y+/TanqoTMBuffer2.5μl,BSA0.8μl,EcoRI5U,MseI5U。连接反应体系中T4DNA连接酶浓度2U即达最佳效果。酶切、酶连反应最佳温度均为37℃。③以板栗为材料进行AFLP标记时,E AAC+M CAA、E AAC+M CAT和E AGT+M CAT三个引物均获得较好的多态性。其中以E AGT+M CAT引物组合的扩增条带信号强度一致性好,条带分布均匀,能够得到稳定、清晰、分辨率较高的指纹谱带,可进行中国板栗的遗传变异分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号