首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
This study investigated near-infrared spectroscopy (NIRS) to rapidly estimate physical and mechanical properties of No. 2 2 × 4 southern pine lumber. A total of 718 lumber samples were acquired from six mills across the Southeast and destructively tested in bending. From each piece of lumber, a 25-mm-length block was cut and diffuse reflectance NIR spectra were collected from the transverse face using a FOSS 5000 scanning spectrometer. Calibrations were created using partial least squares (PLS) regression and their performance checked with a prediction set. Overall moderate predictive ability was found between NIRS and the properties for the calibration and prediction sets: block specific gravity (SG) (R 2 = 0.66 and R p 2  = 0.63), lumber SG (0.54 and 0.53), modulus of elasticity (MOE) (0.54 and 0.58), and modulus of rupture (MOR) (0.5 and 0.4). Model performance for MOE (R p 2  = 0.70) and MOR (R p 2  = 0.50) improved when performing PLS regression on a matrix containing lumber SG and NIR spectra. Overall NIRS predicted MOE better than linear models using lumber SG (R 2 = 0.46), whereas lumber SG (R 2 = 0.51) predicted MOR better than NIRS. Overall NIRS has reasonably good predictive ability considering the small volume of wood that is scanned with the instrument.  相似文献   

2.
The use of calibrated near infrared (NIR) spectroscopy for measuring and predicting the advancement of wood decay in Pinus spp. sapwood wafers that were subjected to Gloeophyllum trabeum for periods ranging from 1 to 10 days was investigated. NIR spectra were obtained from the center of the cross-sectional face of each sample before and after decay tests. Mass loss and compression tests were also used to measure the progression of decay. Calibrations were created from NIR spectra, mass loss, and compression strength data using untreated and mathematically treated (multiplicative scatter correction and first and second derivative) spectra. Strong relationships were derived from the calibrations with the strongest R 2 values being 0.98 (mass loss) and 0.97 (compression strength). Calibrations for mass loss showed the strongest statistics for predicting wood decay of a separate test set (0.85 raw, second derivative to 0.76 multiplicative scatter correction (MSC), while predictions for compression strength of the decayed samples resulted in R 2 of 0.69 (raw) to 0.54 (MSC). Calibrations created from the amount of time the samples were decayed showed strong statistics, indicating that NIR spectroscopy can predict the early stages of wood decay.  相似文献   

3.
The objectives of this study were to establish the method of evaluating wood mechanical properties by acoustic nondestructive testing at standing trees and at logs of a Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation, and to compare three acoustic nondestructive methods for evaluating the static bending modulus of elasticity (MOE), modulus of rupture (MOR), and compressive strength parallel-to-grain (σc) of plantation wood as well. Fifteen Chinese fir plantation trees at 36 years of age were selected. Each tree was cut into four logs, for which three values of dynamic modulus of elasticity, i.e., E sw, of the north and south face based on stress waves to assume the measuring state of the standing tree, E fr, longitudinal vibration, and E us, ultrasonic wave, were measured in the green condition. After log measurements, small specimens were cut and air-dried to 12% moisture content (MC). Static bending tests were then performed to determine the bending MOE and MOR, and compressive tests parallel-to-grain were made to determine σc. The bending MOE of small clear specimens was about 7.1% and 15.4% less than E sw and E us, respectively, and 11.3% greater than E fr. The differences between the bending MOE and dynamic MOE of logs as determined by the three acoustic methods were statistically significant (P < 0.001). Good correlation (R = 0.77, 0.57, and 0.45) between E sw, E fr, and E us and static MOE, respectively, were obtained (P < 0.001). It can be concluded that longitudinal vibration may be the most precise and reliable technique to evaluate the mechanical properties of logs among these three acoustic nondestructive methods. Moreover, the results indicate that stress wave technology would be effective to evaluate wood mechanical properties both from logs and from the standing tree.  相似文献   

4.
Genetic parameters for wood stiffness and strength properties were estimated in a 29-year-old hybrid larch stand (Larix gmelinii var. japonica × Larix kaempferi). The study included 19 full-sib larch families from Hokkaido, northern Japan. Implications of these genetic parameters in wood quality improvement are subsequently discussed. Traits included in the analyses were the dynamic modulus of elasticity of green logs (E log), the modulus of elasticity (MOE), the modulus of rupture (MOR), compression strength parallel to the grain (CS) in small clear specimens, wood density (DEN), and diameter at breast height (DBH). DEN had the lowest coefficients of variation and MOE the highest. The narrow-sense heritability estimates of E log, MOE, MOR, and CS were 0.61, 0.44, 0.60, and 0.43, respectively, and those of DEN and all mechanical properties increased from an inner to outer position within the stem. E log and DEN had high positive phenotypic (0.52–0.83) and genetic (0.70–0.92) correlations with MOE, MOR, and CS. The mechanical properties of the inner position of the stem had rather high phenotypic and genetic correlations with those of the outer position and overall mean. The predicted gains in wood stiffness (E log and MOE) were higher than those of the strength properties (MOR and CS). The predicted correlated responses in MOE, MOR, and CS when selecting for E log and DEN were 72.6%–97.8% of a gain achievable from direct selection of these traits. DBH showed an insignificant correlation with all mechanical properties, although selection of this trait had a slightly negative effect on the mechanical properties.  相似文献   

5.
The visible and near infrared (NIR) (350-2500 nm) spectra and the MOE of 438 small clear wood samples from Chinese fir, eucalyptus and poplar 72 were measured. Using partial least-square (PLS) modeling, the NIR spectra could be used to predict MOE and MOR of the clear-wood samples from Chinese fir and eucalyptus solid wood. NIR spectra could only be used to Predict MOE but not MOR of poplar clear-wood samples. With the exception of MoR of poplar clear-wood samples, the correlations between NIR and the mechanical properties are very strong, and the calibration and test correlation coefficients are both above 0.80.  相似文献   

6.
Tracheid coarseness, specific surface, wall thickness, perimeter, and radial and tangential diameter from 119 radial strips of Pinus taeda L. (loblolly pine) trees grown on 14 sites in three physiographic regions of Georgia (USA) were measured by SilviScan. NIR spectra were also collected in 10 mm increments from the radial longitudinal surface of each strip and split into calibration (9 sites, 729 spectra) and prediction sets (6 sites, 225 spectra). NIR spectra (untreated and mathematically treated first and second derivative and multiplicative scatter correction) were correlated with tracheid properties to develop calibrations for the estimation of these properties. Strong correlations were obtained for properties related to density, the strongest R 2 being 0.80 (coarseness), 0.78 (specific surface) and 0.84 (wall thickness). When applied to the test set, good relationships were obtained for the density-related properties (R p 2 ranged from 0.68 to 0.86), but the accuracy of predictions varied depending on math treatment. The addition of a small number of cores from the prediction set (one core per new site) to the calibration set improved the accuracy of predictions and, importantly, minimized the differences obtained with the various math treatments. These results suggest that density related properties can be estimated by NIR with sufficient accuracy to be used in operational settings.  相似文献   

7.
Abstract

Wood density is an important quality variable, closely related to the mechanical properties of the wood. Precise wood density measurements in the log sorting would enable density sorting of logs for products such as strength-graded wood and finger-jointed wood. Density sorting of logs would also give more homogeneous drying properties and thus improve the quality of the final products. By compensating the radiographs from an X-ray log scanner for the varying path lengths using outer shape data from a three-dimensional (3D) scanner, it is possible to make precise estimates of both green and dry density. Measurements on simulated industrial data were compared with densities measured in computed tomographic (CT) images for 560 Scots pine (Pinus sylvestris L.) logs. It was found that green sapwood density could be measured with predictability R 2=0.65 and root mean square error (RMSE) of 25 kg m?3. Green and dry heartwood densities were measured with similar precision: R 2=0.79 and RMSE=32 kg m?3 for green density and R 2=0.83 and RMSE=32 kg m?3 for dry density.  相似文献   

8.
The dimension lumber (45mm×90mm×3700mm) of plantation Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) was graded to four different classes as SS, No. 1, No.2 and No.3, according to national lumber grades authority (NLGA) for structure light framing and structure joists and planks. The properties of apparent density was determined at 15% moisture content, bending strength and stiffness were tested according to American Society for Testing and Materials (ASTM) D198-99, and dynamic modulus of elasticity (Eusw) was measured by ultrasonic technique, for predicting the flexural properties of different grade lumbers. The results showed that Eosw was larger than the static MOE. The relationship between Eusw and static MOE was significant at 0.01 level, and the determination coefficients (R2) of the four grade lumbers followed the sequence as R^2No.2 (0.616)〉 R^2ss (0.567)〉 R^2No1 (0.366)〉 R^2No.3 (0.137). The R^2 of Fusw and MOR were lower than that of the Etru and MOR for each grade. The Eusw of all the grade lumbers, except No.3-grade, had significant correlation with the static MOE and MOR, thus the bending strengthof those grade lumbers can be estimated by the E The Etru valuesof four grade lumbers followed a sequence as No.2-grade (10.701 GPa) 〉 SS-grade (10.359 GPa) 〉 No.l-grade (9.840 GPa) 〉 No.3-grade (9.554 GPa). For the same grade dimension lumber, its Eusw value was larger than static MOE. Mean values of MOR for four grade lumbers follow a sequence as No.2-grade (48.67 MPa) 〉 SS-grade (48.16 MPa) 〉 No.3-grade (46.55 MPa) 〉 No. 1-grade (43.39MPa).  相似文献   

9.
The effects of early re-spacing on the physical and mechanical properties of Sitka spruce (Picea sitchensis [Bong.] Carr.) structural-dimensioned timber were studied using material from a fully replicated 57-year-old trial located in Northern Ireland, which had been thinned at age 11 years. Basic density, distortion (spring, twist and bow), modulus of elasticity (MOE) and modulus of rupture (MOR) in bending of structural timber from four different re-spacing treatments (1.83 m × 3.66 m, 3.66 m × 3.66 m, 3.66 m × 5.49 m and 5.49 m × 5.49 m) were compared with those of timber from a control (1.83 m × 1.83 m). Re-spacing intensity had a significant effect on both modulus of elasticity (p = 0.006) and modulus of rupture (p = 0.009), but not on basic density (p = 0.379) or distortion (p > 0.200). Timber from the two widest re-spacing treatments failed to meet the requirements for the C14 strength class, while timber from the control met the requirements for the C16 strength class. Both MOE and MOR were significantly and negatively associated with knot size and frequency, which in turn increased with re-spacing intensity. Overall, re-spacing intensity only explained approximately 10% of the total amount of variation in both MOE and MOR, with most of the variation due to inter- and intra-tree differences within a treatment. Based on these results, re-spacing of Sitka spruce to a residual stand density of less than 900 trees/ha (3.33 m × 3.33 m) is not recommended if the goal of management is to produce C16 structural timber.  相似文献   

10.
The use of calibrated near-infrared (NIR) spectroscopy for predicting of a range of solid wood properties is described. The methods developed are applicable to large-scale nondestructive forest resource assessment and to tree breeding and silviculture programs. A series ofPinus radiata D. Don (radiata pine) samples were characterized in terms of density, longitudinal modulus of elasticity (E L), and microfibril angle (MFA). NIR spectra were obtained from the radial/longitudinal face of each sample and used to generate calibrations for the measured physical properties. The relations between laboratory-determined data and NIR fitted data were good in all cases, with coefficients of determination (R 2) ranging from 0.68 for 100/MFA to 0.94 for densitystrip. A good relation (R 2 = 0.83) was also obtained forE L estimated using data collected by SilviScan-2. The finding suggests that an NIR instrument could be calibrated to estimate theE L of increment cores based on SilviScan data. In view of the rapidly expanding range of applications for this technique, it is concluded that appropriately calibrated NIR spectroscopy could form the basis of a testing instrument capable of predicting a range of properties from a single spectrum obtained from the product or from the raw material.  相似文献   

11.
Development of optimal ways to predict juvenile wood stiffness, strength, and stability using wood properties that can be measured with relative ease and low cost is a priority for tree breeding and silviculture. Wood static modulus of elasticity (MOE), modulus of rupture (MOR), radial, tangential, and longitudinal shrinkage (RS, TS, LS), wood density (DEN), sound wave velocity (SWV), spiral grain (SLG), and microfibril angle (MFA) were measured on juvenile wood samples from lower stem sections in two radiata pine test plantations. Variation between inner (rings 1–2 from pith) and outer (rings 3–6 from pith) rings was generally larger than that among trees. MOE and MOR were lower (50%) in inner-rings than in outer-rings. RS and TS were higher (30–50%) for outer-rings than inner-rings, but LS decreased rapidly (>200%) from inner-rings to outer-rings. DEN had a higher correlation with MOR than with MOE, while MFA had a higher correlation with dry wood MOE than with MOR. SLG had higher significant correlation with MOE than with MOR. DEN and MOE had a weak, significant linear relationship with RS and TS, while MOE had a strong negative non-linear relationship with LS. Multiple regressions had a good potential as a method for predicting billet stiffness (R 2 > 0.42), but had only a weak potential to predict wood strength and shrinkage (R 2 < 0.22). For wood stiffness acoustic velocity measurements seemed to be the most practical, and for wood strength and stability acoustic velocity plus core density seemed to be the most practical measurements for predicting lower stem average in young trees.  相似文献   

12.
Near infrared (NIR) reflectance spectroscopy was tested as a fast method for characterizing the toxic effects of air pollution on trees. Fagus sylvatica was exposed to known, different levels of ozone during summer of 2003 in plant chambers. Leaves were taken from the plants and NIR spectra were recorded. In order to derive calibration models, reference analyses were carried out and soluble carbohydrates were determined by an enzymatic method. Minor components, like α-tocopherol, were measured after solvent extraction using gas chromatography-mass spectrometry. A partial least squares (PLS) algorithm was used to perform the chemometric analyses. Good or in some cases very good calibration statistics expressed in terms of root mean square error of cross validation and R2 were obtained for glucose, fructose, sucrose, and α-tocopherol. In addition, a better than expected correlation between the NIR spectra of the leaves and the ozone concentration in the plant chambers was observed. NIR spectroscopy appears to be a very useful method to simultaneously determine many components in leaves that are related to the health of trees. It is obviously able to quantitatively describe the changing patterns of constituents in leaves of trees caused by toxic substances. Thus, NIR spectroscopy can be a very effective tool for environmental biomonitoring, especially for observation of forests.  相似文献   

13.

The aim of the study was to investigate the possibility of strength grading Norway spruce [Picea abies (L.) Karst.] saw logs on the basis of simulated X-ray LogScanner measurements and to evaluate the potential accuracy of X-ray LogScanner measurements of green heartwood density and percentage of heartwood. The study was based on 272 logs for strength grading and 29 logs for measurements of green heartwood density and percentage of heartwood. The logs were scanned using computed tomography (CT). After sawing, the modulus of elasticity (MOE) of the centre boards was measured using a strength-grading machine. The CT images were used for simulations of an X-ray LogScanner, resulting in simulated measurements of different variables such as diameter, taper, percentage of heartwood, density and density variations. Multivariate models for prediction of MOE were then calibrated using partial least squares (PLS) regression. The MOE of a log was defined as the mean value of the MOE of the two centre boards. The study showed that the simulated X-ray LogScanner measured the percentage of heartwood and green heartwood density with relatively high accuracy (R 2 = 0.94 and R 2 = 0.73, respectively, after removing two outliers) and that these and other variables measured by the simulated X-ray LogScanner could be used to predict the stiffness of the centre boards. These predictions were used to sort the logs according to the predicted MOE. When sorting out 50% of the logs (''high-strength'' logs), the percentage of C30 boards increased from 73% (all logs in the study) to 100% (only ''high-strength'' logs). The rest of the logs could then be divided into two groups, one of them with 100% C24 and C30 boards.  相似文献   

14.
In this report, the 575 specimens were divided into ten groups based on range of growth ring width. The modulus of elasticity (MOE) and modulus of rupture (MOR) of 45 × 90 mm specimens of Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantation dimension lumber were analyzed by average growth ring width and average density of each group. The results showed that the average growth ring width was in inverse proportion to density, MOE, and MOR of the dimension lumber. Furthermore, average density was in direct proportion to MOE and MOR of the dimension lumber. The coefficient of determination (R 2) for all the regression equations ranged from 0.7340 to 0.9207 at a significance level of 0.001. However, without such group classification, there was poor relationship between growth ring width, density, MOE, and MOR with a determination coefficient of 0.0901–0.1855. This finding suggested that it was feasible to predict the flexural properties of Chinese fir plantation dimension lumber by average growth ring width after specimen group classification.  相似文献   

15.
Understanding the proximate causes of post-fire conifer mortality due to smoldering duff fires is essential to the restoration and management of coniferous forests throughout North America. To better understand duff fire-caused mortality, we investigated tree stress and radial growth following experimental fires in a long-unburned forest on deep sands in northern Florida, USA. We burned basal fuels surrounding 80 mature Pinus palustris Mill. in a randomized experiment comparing the effects of basal burning treatments on stem vascular meristems; surficial roots; root and stem combinations; and a non-smoldering control. We examined the effects of duration of lethal temperatures (>60 °C) on subsequent pine radial growth and root non-structural carbohydrates (starch and sugar). Duff and mineral soil temperatures in the experimental fires consistently exceeded 60 °C for over an hour following ignition, with lethal temperatures of shorter duration recorded 20 cm below the mineral soil surface. Duff heating was best explained by day-of-burn Oe horizon moisture (P = 0.01), although little variation was explained (R2 = 0.24). Post-fire changes in latewood radial increment in the year following fires was related to duration of temperatures >60 °C 10 cm deep in the mineral soil (P = 0.07), but explained little variability in post-fire growth (R2 = 0.17). In contrast, changes in non-structural carbohydrate content in coarse roots (2–5 mm diameter) 120 days following burning were more strongly correlated with the duration of lethal heating 5 cm below the mineral soil surface (P = 0.02; R2 = 0.53). Results from this study implicate the role of mineral soil heating in the post-fire decline of mature longleaf pine following restoration fires in sandy soils.  相似文献   

16.
Abstract

This study assessed variation in modulus of elasticity of trees and logs of Scots pine (Pinus sylvestris) trees. The study used 192 sample trees (c. 90–150 years) selected from 24 clear-felling forests in central and southern Sweden. Modulus of elasticity (MOE) assessed with transit-time technology on standing tree stems at 0.5–2.0m on the southern and northern side of each tree varied from 8.6 to 17.6 GPa. No systematic MOE difference was found between the southern and northern side of tree stems. The sometimes large MOE variations seen in some individual trees are probably a result of wood variation and wood defects. MOE assessed with resonance-based technology varied between 7.4 and 14.1 GPa for logs cut at similar height (<6.0 m). Models of MOE variation were derived from factors related to growth conditions at stand and tree level, with an R 2 adj of c. 0.46–0.62. The models indicate that growth and tree attributes associated with and/or creating less stem taper would yield trees with higher MOE.  相似文献   

17.
研究了不同培育措施(初植密度、间伐强度、坡向、坡位)对人工林樟子松(Pinus sylvestris var.mongolica)木材的密度和力学性质(横纹抗弯强度、抗弯弹性模量、顺纹抗压强度、冲击韧性、端面硬度)的影响。初植密度(1.5m×1.0m,1.5m×2.0m和1.5m×2.5m)对木材密度和抗弯弹性模量有显著的影响。初植密度为1.5m×1.0m时,木材主要力学指标值最大。适当间伐可提高木材的抗弯弹性模量和顺纹抗压强度,但重度间伐则会降低木材的力学强度。坡向(阳坡和阴坡)对木材的抗弯弹性模量影响显著,阳坡高于阴坡。坡位(上坡位和下坡位)对除端面硬度外的木材力学性质指标影响都显著,各项力学指标值均是坡下高于坡上。表5参9。  相似文献   

18.
In 2004 and 2005, the yield, leaf area, dry weight and dry weight partitions of soybeans were determined at the Agroforestry Research Site (ARS) (est. 1987, Ontario, Canada). Soybean was intercropped with poplar (Populus deltoides x nigra DN-177 L., 556 m3crown tree−1), silver maple (Acer saccharinum L., 308 m3), black walnut (Juglans nigra L., 148 m3) and pecan (Carya illinoensis Wangenh., 114 m3), or grown alone (monoculture). Yield of soybean was not different in either year between the monoculture and the black walnut or pecan intercrops. In the poplar and silver maple treatments, yield was 66 and 85% (2004 and 2005) lower than in the monoculture. Despite the fact that different tree species were used, there was a significant negative linear regression between yield and tree crown volume (R 2 = 0.76, P = 0.0049 and R 2 = 0.93, P < 0.0001 in 2004 and 2005, respectively). With increasing tree crown volume, soybean tended to partition more dry matter to the photosynthetic and reproductive parts and less to structural tissue and petiole. This demonstrates the phenotypic flexibility of the crop component in agroforestry systems. Contrary to theoretical predictions, soybean leaves were thicker as shade increased (increase by 6.2 × 10−4–1.2 × 10−3 mg cm−2, per unit of crown volume), pointing to competitive interactions specific to tree-based intercrops.  相似文献   

19.
Summary Two types of particleboards bonded with an isocyanate resin, one with uniform vertical density profile (homo-profile), and the other with conventional U-shaped profile, were fabricated to various density levels using lauan (Shorea spp.) particles. The fundamental relationships between the density profile and the board properties were determined, and the results are summarized as follows: 1. In homo-profile boards, the moduli of rupture (MOR) and elasticity (MOE), internal bond (IB) strength, and screw withdrawal resistance (SWR), are highly correlated to the board mean density. 2. The bottom limit of the board density is estimated to be ca. 0.25 g/cm3, based on the correlation regressions between mechanical properties and mean density. 3. At equal mean density level, the MOR and MOE of the conventional particleboards are higher than the homo-profile boards, due to the higher density near the faces. However, the reverse is true for IB, owing to the presence of the low density core in the former. 4. The net impact of peak density on MOR and MOE is greater at higher mean density level while raising the core density results in more pronounced improvement in IB at lower density. 5. In addition to the compaction ratio, the dimensional stability of the board is also affected by the peak area and mat moisture content. Received 9 January 1997  相似文献   

20.
Green manure of multipurpose trees is known to be a good source of nutrients to crop. However, most agroforestry species do not have adequate phosphorus (P) in their leaves. Supplementing green manure with moderate dose of P is a beneficial strategy to improve food security in Rwanda. This study examines the effects of Calliandra calothyrsus Meissner, Tithonia diversifolia Hensley A.Gray and Tephrosia vogelii Hook.f. green manure applied independently or in combination with triple super phosphate (TSP) and lime on maize yield and P uptake in the Oxic Tropudalf of Rubona, Rwanda. The treatments were the control, lime at 2.5 t ha−1, TSP at 25 and 50 kg P ha−1, leaf of C. calothyrsus, T. diversifolia, and T. vogelii each at 25 and 50 kg P ha−1, respectively. Leaf shrubs biomass, TSP and lime were applied for four consecutive seasons (2001–2004). The results showed that the combination of green manure with TSP at a rate of 50 kg P ha−1 significantly increased maize yield from 24 to 508% when compared to the control and T. divesifolia combined with TSP was leading (508%). Equally, the same treatments as indicated above showed higher P uptake (15.6–18. 6 kg P ha−1) than the control (5 kg P ha−1) and 65% of maize yields variation was explained by total P uptake. The plant residues quality such as C:N ratio, total plant N, and P significantly influenced the variability of maize grain yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号