首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Little information is available about the effects of cover crops on soil labile organic carbon (C), especially in Australia. In this study, two cover crop species, i.e., wheat and Saia oat, were broadcast-seeded in May 2009 and then crop biomass was crimp-rolled onto the soil surface at anthesis in October 2009 in southeastern Australia. Soil and crop residue samples were taken in December 2009 to investigate the short-term effects of cover crops on soil pH, moisture, NH4+–N, NO3–N, soluble organic C and nitrogen (N), total organic C and N, and C mineralization in comparison with a nil-crop control (CK). The soil is a Chromic Luvisol according to the FAO classification with 48.4 ± 2.2% sand, 19.5 ± 2.1% silt, and 32.1 ± 2.1% clay. An exponential model fitting was employed to assess soil potentially labile organic C (C 0) and easily decomposable organic C for all treatments based on 46-day incubations. The results showed that crop residue biomass significantly decreased over the course of 2-month decomposition. The cover crop treatments had significantly higher soil pH, soluble organic C and N, cumulative CO2–C, C 0, and easily decomposable organic C, but significantly lower NO3–N than the CK. However, no significant differences were found in soil moisture, NH4+–N, and total organic C and N contents among the treatments. Our results indicated that the short-term cover crops increased soil labile organic C pools, which might have implications for local agricultural ecosystem managements in this region.  相似文献   

2.
The field experiments were carried out at Indian Agricultural Research Institute, New Delhi during three crop cycles from 1996-97 to 1998-99 to study the effect of incorporation of wheat and rice residues with and without a culture of cellulolytic fungi Trichrus spiralis on grain and straw yields and NPK uptake of rice-wheat cropping system and organic C, available P and available K content of soil. Incorporation of residue of wheat, rice or both had no significant effect on individual grain and straw yields and N and P uptake of rice and wheat, but significantly increased total grain and straw yields and N and P uptake of rice-wheat cropping system. Cellulolytic culture had no additional advantage over crop residues. Incorporation of residue of wheat, rice or both significantly increased K uptake of both rice and wheat as this practice resulted in recycling of 90% of total K uptake by rice and wheat crops. Incorporation of crop residue also resulted in building up of organic C, available P and available K content in soil.  相似文献   

3.
The present paper summarizes the results from a long-term experiment setup in 1980 in the Taihu Lake region, China, to address the yield sustainability, the dynamic changes of soil organic carbon (SOC) storage, and soil fertility in the rice–wheat ecosystem. Treatments in three replicates comprising manure-treated and chemical fertilizer-treated groups (two factors), each having seven sub-treatments of different combinations of inorganic nitrogen (N), phosphorus (P), potassium (K), and rice straw, were randomly distributed. Results showed that the treatments of manure (pig manure from 1980 to 1996 and oil rape cake thereafter) + N + P + K (MNPK) and chemical fertilizer + N + P + K (CNPK) produced the highest and the most stable yields for both rice and wheat within the respective fertilizer treatment group. Potassium fertilization was necessary for yield sustainability in the ecosystem. Treatments of straw (as rice straw) + N (CRN) and manure + straw + N (MRN) produced more stable yield of rice but less stable of wheat. It was therefore recommended that straw should be only incorporated during the rice season. SOC contents in all treatments showed increasing trends over the period, even in the control treatment. Predicted SOC in chemical fertilizer-treated plots (mostly yet attainable) ranged from 16 to 18 g C kg−1, indicating the high carbon (C) sequestration potential of the soil as compared to the initial SOC. SOC in manure- or straw-treated plots ranged from 17 to 19 g C kg−1, which had been attained roughly 10 years after the experiment was initiated. Nutrient balance sheet showed that there was P surplus in all P-treated plots and a steady increase in Olsen-P over a 24-year period in 0–15 cm soil, which contributed little to crop yield increases. It was therefore suggested that P fertilization rate should be decreased to 30–40 kg P ha−1 year−1. Comparison of yields among the treatments showed that wheat was more responsive to P fertilizer than rice. Thus P fertilizer should be preferably applied to wheat. Soil pH decrease was significant over the 24-year period and was not correlated with fertilizer treatments. The overall recommendation is to incorporate straw at 4,500 kg ha−1 year−1 during the rice season only, with additional 190 kg N ha−1 year−1, 30–40 kg P ha−1 year−1 mainly during the rice season, and 150–160 kg K ha−1 year−1. Further research on the unusual P supply capacity of the soil is needed.  相似文献   

4.
We conducted a pot experiment using a wheat‐millet rotation to examine the effects of two successive rice‐straw biochar applications on crop growth and soil properties in acidic oxisols and alkaline cambosols from China. Biochar was incorporated into soil at rates of 0, 2.25 or 22.5 Mg/ha at the beginning of each crop season with identical applications of NPK fertilizer. In the oxisols, the largest biochar treatment enhanced soil pH and cation exchange capacity, decreased soil bulk density, improved soil P, K, Ca and Mg availability and enhanced their uptake, and increased wheat and millet yields by 157 and 150% for wheat grain and straw, respectively, and 72.6% for millet straw. In the cambosols, biochar treatment decreased soil bulk density, improved P and K availability, increased N, P and K uptake by crops and increased wheat and millet straw yields by 19.6 and 60.6%, respectively. Total soil organic carbon increased in response to successive biochar applications over the rotation. No difference in water‐soluble organic carbon was recorded between biochar‐treated and control soils. Converting straw to biochar and treating soils with successive applications may be a viable option for improving soil quality, sequestering carbon and utilizing straw resources in China.  相似文献   

5.
To achieve higher yields and better soil quality under rice–legume–rice (RLR) rotation in a rainfed production system, we formulated integrated nutrient management (INM) comprised of Azospirillum (Azo), Rhizobium (Rh), and phosphate-solubilizing bacteria (PSB) with phosphate rock (PR), compost, and muriate of potash (MOP). Performance of bacterial bioinoculants was evaluated by determining grain yield, nitrogenase activity, uptake and balance of N, P, and Zn, changes in water stability and distribution of soil aggregates, soil organic C and pH, fungal/bacterial biomass C ratio, casting activities of earthworms, and bacterial community composition using denaturing gradient gel electrophoresis (DGGE) fingerprinting. The performance comparison was made against the prevailing farmers’ nutrient management practices [N/P2O5/K2O at 40:20:20 kg ha−1 for rice and 20:30:20 kg ha−1 for legume as urea/single super-phosphate/MOP (urea/SSP/MOP)]. Cumulative grain yields of crops increased by 7–16% per RLR rotation and removal of N and P by six crops of 2 years rotation increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots over that in compost alone or urea/SSP/MOP plots. Apparent loss of soil total N and P at 0–15 cm soil depth was minimum and apparent N gain at 15–30 cm depth was maximum in Azo/Rh plus PSB dual INM plots. Zinc uptake by rice crop and diethylenetriaminepentaacetate-extractable Zn content in soil increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Total organic C content in soil declined at 0–15 cm depth and increased at 15–30 cm depth in all nutrient management plots after a 2-year crop cycle; however, bacterial bioinoculants-based INM plots showed minimum loss and maximum gain of total organic C content in the corresponding soil depths. Water-stable aggregation and distribution of soil aggregates in 53–250- and 250–2,000 μm classes increased significantly (P < 0.05) in bacterial bioinoculants-based INM plots compared to other nutrient management plots. Fungal/bacterial biomass C ratio seems to be a more reliable indicator of C and N dynamics in acidic soils than total microbial biomass C. Compost alone or Azo/Rh plus PSB dual INM plots showed significantly (P < 0.05) higher numbers of earthworms’ casts compared to urea/SSP/MOP alone and bacterial bioinoculants with urea or SSP-applied plots. Hierarchical cluster analysis based on similarity matrix of DGGE profiles revealed changes in bacterial community composition in soils due to differences in nutrient management, and these changes were seen to occur according to the states of C and N dynamics in acidic soil under RLR rotation.  相似文献   

6.
长期有机养分循环利用对红壤稻田土壤供氮能力的影响   总被引:2,自引:1,他引:2  
通过15年的田间定位试验结合盆栽试验,研究了长期有机养分循环利用和不同化肥配施对红壤稻田土壤供氮能力的影响。结果表明,土壤有机碳、全氮、微生物生物量氮(MB-N)和土壤氮的矿化量与生物吸氮量有极显著的正相关关系,是良好的土壤供氮能力指标。长期有机养分循环利用或配合化肥施用能显著提高土壤有机碳、全氮含量和氮的矿化量,提高幅度分别为20.1%4~0.9%、0.460~.60.g/kg和55.0%(6周);明显提高土壤MB-N含量,提高幅度平均为70.3%。长期纯化肥处理对土壤碳、氮库的积累和氮的矿化量的提高作用甚微。盆栽试验表明,长期施用氮肥和氮、磷、钾肥土壤供氮量提高量极小,与长期不施肥相比提高幅度分别为2.1%和6.2%,而有机养分循环利用能显著提高土壤供氮量,提高幅度为33.7%8~9.0%。随着有机养分循环利用和NPK肥配合程度的提高,土壤供氮量提高幅度呈上升的趋势。  相似文献   

7.
A long-term experiment (LTE) on a rice-wheat system was initiated in 1963 at the Kyushu National Agricultural Experiment Station, in Fukuoka, Japan, to determine the effects of continuous application of rye grass/wheat straw, rice straw and rice straw compost, alone or in combination with inorganic N on crop yields. Increase in rice yields and enhancement of total soil C and N contents with the application of organic residues in this LTE have been reported earlier. However, evaluation of the changes in the soil microbiological properties and the decomposable C fraction of soil organic matter that is needed for soil quality assessment is still lacking. Soil samples were collected after rice harvest in 2003 from the organic residue treatments and unfertilized control, air-dried and incubated for 1 month under aerobic [50% water-filled pore space (WFPS)] and flooded conditions prior to the analysis of the amount of microbial biomass C (MBC), soil respiration and the amount of potential mineralizable N (PMN). The contents of total C (TC), total N (TN), organic C (OC), hot water-extractable C (HWEC) and permanganate-oxidizable C (POC) were determined from air-dried soils. Organic residue incorporation brought about significant increases in the contents of TC, TN, OC, POC, HWEC and PMN. The largest accumulation of total C (23%) and N (72%) in the soil was from rice straw compost, compared with that from rice straw (C, 7% and N, 33%) and rye grass/wheat straw (C, 9% and N, 29%). Incorporation of rice straw compost also increased the amount of MBC under both aerobic and flooded conditions and basal soil respiration under aerobic conditions only. An efficient utilization of C by microorganisms was indicated by a significantly lower metabolic quotient (qCO2) in the composted and uncomposted rice straw treatments compared with the control in the “-” N treatment under aerobic conditions. Similarly, the flush of CO2 after rewetting of dry soil per unit of HWEC was lower in the organic matter treatments, indicating a more efficient C utilization and lower C losses per unit of available C. The content of HWEC was significantly correlated with the basal soil respiration (at 50% WFPS), the amounts of MBC, PMN and with the increase in the content of soil organic C in the residuetreated soils. In the treatments without inorganic N fertilizer, grain yield was significantly correlated with the amounts of total organic C, HWEC, MBC (at 50% WFPS), basal soil respiration (at 50% WFPS) and the amount of PMN.  相似文献   

8.
Long-term cultivation impacts soil properties. During the early 1920s a study comparing non-cultivated and cultivated soils was done in eastern SD (Beadle, McCook, Minnehaha, and Union Counties), USA. The objectives of the current study were to: (1) determine the long-term (>80 years) impact of cultivation on selected soil properties; and (2) establish baseline soil data that can be used for future comparisons. Sample sites were located in well-drained summit and upper backslope positions. These topographic positions are strongly influenced by erosion processes from tillage, wind, and water. Previous studies at other locations in the region suggest that one might expect a loss of 10–20 cm of soil in >80 years of cultivation at these topographic positions. In the early 1920s the soils were tested for carbon (C) (total, organic, inorganic), total nitrogen (N), total sulfur (S), total calcium (Ca), total phosphorus (P), total potassium (K), and total magnesium (Mg). The 1920s study sites were resampled at 0–15, 15–50, and 50–100 cm depths and analyzed for C (total, organic, inorganic), N (total, nitrate-N), extractable P, extractable K, delta N (15N/14N or δ15N) for total N, delta C (13C/12C or δ13C) for total C, and pH. Long-term cultivation (>80 years) in the northern Great Plains of the United States has caused many significant reductions in surface soil (0–15 cm) extractable P, extractable K, surface pH, total C, organic C, total N, and δ15N for total N. In addition, the organic C to total N ratio for the 15–50 cm depth of cultivated soils was significantly lower when compared to non-cultivated soils. Cultivation caused significant increases in nitrate-N, delta C, inorganic C, and in the total C to total N and inorganic C to total N ratios (15–100 cm depths). Soil properties varied significantly with increasing soil depth. Soil pH, δ13C for total C, inorganic C, total C to total N ratio, and inorganic C to total N ratio increased significantly as soil depth increased. Nitrate-N, extractable P, extractable K, δ15N for total N, organic C, and total N decreased significantly as soil depth increased. Soil carbon changes at the sample sites are a combined result of differences in the reference surface elevation, carbon mineralization, and redistribution of carbon due to erosion. Changes in soil nutrient levels reflect crop removal, leaching, erosion, and pedogenic processes.  相似文献   

9.
Improving technologies and the challenge of producing more bio-products while reducing the environmental footprint of humans are shifting paradigms in agricultural research. Harnessing the microbial resources of arable soils is a new avenue to improve the efficiency of nutrient use in agriculture. The objective of this study was to define how crop management influences the contribution of resident AM fungi to nutrient efficiency and crop productivity. The AM fungal communities of 72 organically and 78 conventionally managed wheat fields of the Canadian prairie were described by 454 pyrosequencing and related to crop productivity and N and P use efficiency. Conventional management reduces soil pH and increases the fluxes of all soil nutrients except S, B, and K. Organic management increased the abundance of Claroideoglomus reads. The efficiency of N and P uptake from soil by organic wheat was 2.3 and 1.8 times higher than that of conventional systems. This high N and P uptake efficiency in organic wheat crops was mainly attributable to the low soil fertility of organic fields, as wheat biomass production was 1.44 times greater in conventional than organic systems. Overall, the amounts of N and P taken up by conventional and organic wheat crops were similar. Plant nutrient balance and the abundance of Paraglomus drove conventional wheat production, whereas organic production depended mainly on soil moisture, plant nutrient balance, and abundance of Glomus, which was associated with reduced and nutrient-inefficient wheat production. The high nutrient concentrations at maturity and the low productivity of organic wheat fit a model of limiting CO2-assimilation. The trade-off between nutrient use efficiency and productivity in low input wheat production could be relieved by reducing the abundance of Glomus species, increasing soil moisture and early N availability, or by improving the inherent CO2 assimilation capacity of wheat.  相似文献   

10.
Poultry litter (PL) is an important nutrient source; however, no information is available regarding its value in supplying N and P in rice–wheat (RW) production. A three-year field study was conducted at Ludhiana, Punjab, India on a loamy sand soil to identify optimum combination of PL and N and P fertilizers for a sustainable RW production. The litter was applied to rice at 5 Mg ha−1 as a single application and supplemented with different rates of N. The residual effect of PL and the direct effects of the different combinations of N and P were studied in the following wheat. Nitrogen and P mineralization from PL was studied under controlled conditions in the laboratory, and macronutrient input–output balances were estimated from field results. About 46% of the N from PL was released after 60 days of incubation. The release of P from the PL occurred mainly during the initial 20 days after incubation, accounting for 15–17% of the total P. Combining PL with fertilizer N (40 kg ha−1) increased rice yield and nutrient uptake similar to what was obtained with the application of recommended fertilizer N (120 kg ha−1). In the following wheat, the residual effect of PL was equal to 30 kg N ha−1 and 13 kg P ha−1. After three annual cropping cycles and PL application, mean soil organic C increased by 17%, Olsen-P by 73%, and NH4OAc-extractable-K by 24%. Most treatments had positive P but negative K balances. About 11% of the net P balance was recovered from the soil as Olsen-P. The study showed that optimum N and P fertilizer doses for an RW system receiving 5 Mg ha−1 of PL are 40 kg N ha−1 for rice and 90 kg N + 13 kg P ha−1 for the following wheat. Safe and effective management of PL should be based on P balance, particularly when regular applications of PL are to be made in the RW system.  相似文献   

11.
We investigated some aspects of soil quality and community-level physiological profiles (CLPP) of bacteria in soil under a long-term (37 years) trial with either exclusive inorganic fertilizers or fertilizers combined with farmyard manure cultivated with jute–rice–wheat system. The treatments consisted of 100% recommended dose (RD) of NPK, 150% RD of NPK, 100% RD of N, 100% RD of NPK + FYM (10 t ha−1 year−1), and untreated control. Long-term application of 150% RD of NPK lowered the soil pH considerably while the soils in the other treatments remained near neutral. The 100% RD of NPK + FYM treated plot showed significantly highest accumulation of organic carbon, total nitrogen, microbial biomass carbon, basal soil respiration, and fluorescein diacetate hydrolyzing activity among the treatments. CLPP analysis in Biolog Ecoplates revealed that utilization of carbohydrates was enhanced in all input treated regimes, while the same for polymers, carboxylic acids, amino acids, and amines/amides were similar or less than the untreated control. However, within these groups of carbon sources, heterogeneity of individual substrate utilization between treatments was also noted. Taken together, addition of organic supplements showed significantly increased microbial biomass carbon and microbial activity, but input of nutrient supplements, both inorganic and organic, only marginally affected the overall substrate utilization pattern of soil microorganisms.  相似文献   

12.
Press mud cake (PMC) is an important organic source available for land application in India. Adequate information regarding availability of nitrogen and phosphorous contained in PMC to rice–wheat (RW) cropping system is lacking. In field experiments conducted for 4 years to study the effect of PMC application to rice as N and P source in RW system, application of 60 kg N ha−1 along with PMC (5 t ha−1) produced grain yield of rice similar to that obtained with the 120 kg N ha−1 in unamended plots. In the following wheat, the residual effects of PMC applied to preceding rice were equal to 40 kg N and 13 kg P ha−1. Immobilization of soil and fertilizer N immediately after the application of PMC was observed in laboratory incubation. The net amount of N mineralized from the PMC ranged from 16% at 30 days to 43% at 60 days after incubation. Available P content in the soil amended with PMC increased by about 60% over the unamended control within 10 days of its application. The P balance for the no-PMC treatment receiving recommended dose of 26 kg P ha−1 year−1 was −13.5 kg P ha−1 year−1. The P balance was positive (+42.3 to 53.5 kg P ha−1 year−1) when PMC was applied to rice. Application of PMC increased total N, organic carbon, and available P contents in the soil.  相似文献   

13.
Conversion of a native ecosystem can impact the nature and dynamics of organic carbon (C) fractions. The goal of this study was to determine the effects of cultivation and monoculture wheat production on soil organic C and biological C fractions compared to a previously flooded native pasture in northern Turkey. Soil samples were collected from four randomly selected locations of each management system. Some soil chemical [pH, calcium carbonate (CaCO3), total nitrogen (N), and organic C], physical (sand, clay, and silt), and biological properties [microbial biomass carbon (MBC), mineralizable C, and mineralizable N] were measured. Conversion of pasture to cultivated land slightly increased soil pH, but CaCO3, total organic C (TOC), and N contents were significantly (P < 0.05) decreased with cultivation. Total organic C and N contents were more than three times less in cultivated soils compared to pasture. Microbial biomass C was significantly decreased (P < 0.05) with long-term cultivation, and the greater seasonal fluctuations were measured at the surface of both ecosystems. The greatest level of potentially mineralizable C was observed in the pasture rather than the cultivated soil, but the proportional distribution of mineralized C to TOC was greater in the cultivated soil. These results suggested that the long-term cultivation (15 years) of previously flooded native ecosystems increased C mineralization and resulted in 72% C loss at the surface soil. Cultivated soils have a greater potential to restore atmospheric carbon dioxide (CO2) if proper cultivation and management systems are used.  相似文献   

14.
Using data from long-term experiments at the Loess-Chernozem site, Bad Lauchstädt und 12 other European sites, the carbon (C) and nitrogen (N) dynamics in soils, the determination of decomposable soil organic matter (SOM), the effect on yield of SOM as well as carbon and nitrogen balances are discussed. Both C and N in SOM have to be divided into an inert and a decomposable fraction. The inert C is strongly correlated with clay content, while most changes in both C and N occur in the readily decomposable fraction. In the experiments considered the latter ranges between 0.2 to 0.6% C and 0.02 to 0.06% N. The annual changes of the Corg content amount only to about 0.01% Corg corresponding to 500 kg/ha, even under extreme changes of the fertilizing system. Hot water extractable C (Chwe) has proved to be an appropriate criterion for the calculation of the decomposable C and thus for the N release from soil. Different methods to maintain a SOM balance are compared and first guideline values for an agronomically and ecologically justified SOM content of arable soils are recommended. In arable soils the exceeding of an upper Corg value influences neither crop yield nor the C and N balance in a positive way. In terms of ecology and environment, set-aside-programmes or fallows in a crop rotation affect the balances negatively. Atmospheric N deposition can amount to about 50 kg/ha·yr.  相似文献   

15.
《Journal of plant nutrition》2013,36(12):2259-2272
Abstract

Pot experiments were conducted in a glasshouse to investigate the effect of soil water content and phosphorus (P) supply on biomass, P uptake by rice cultivated in soils with different water regimes and soil available P. Results showed that P application rates had greater effect on P nutrition of rice than soil moisture content. Yield of rice grain was significantly decreased when soil moisture content was kept at 60% of water holding capacity (WHC) while the yields of rice grain were not significantly different when soil moistures were remained at 80% of WHC and waterlogged. This meant that it was possible for paddy rice variety to be cultivated in aerobic soil under the condition of sufficient P supply. The highest biomass of rice and highest P uptake by rice were found in the treatment with 0.0300 g P kg?1 of P application rate and with 80% of WHC. Soil available P content decreased with the decrease of both the soil moisture content and the P applied. Rice crop exhausted soil P to a great extent leading to very low available soil P content when the rice crop was harvested, especially in the soil receiving no or small amounts of P fertilizer. All the results obtained in this experiment could provide the theoretic base for water and P management of paddy rice variety cultivated in aerobic soil in the southern hilly areas of China.  相似文献   

16.
The effects of biosolids from tomato processing on soil properties and wheat growth were investigated in an Alfisol from central Greece. Biosolids were mixed with soil from the surface (Ap) or subsurface (Bt) horizon in plastic containers at rates of 1%, 5%, and 10% by dry weight (d.w.; equivalent to 10, 50, and 100 Mg ha–1). Biosolid treatments were compared to an NH4Cl application (50 mg N kg–1) and an untreated control in (1) a 102 d incubation experiment at 28°C to determine biosolid nitrification potential and (2) a 45 d outdoor experiment to evaluate effects on soil fertility and wheat growth. Mineralization of biosolids in the incubation experiment resulted in accumulation of nitrate‐N and indicated that biosolids were able to supply N that was in excess of crop needs in treatments of 5% and 10%. After 45 d of wheat growth, available soil nutrients (N, P) and P uptake by wheat were distinctly lower in the Bt than in the Ap horizon. However, soil pH, electrical conductivity, organic matter, total N, nitrate‐N, extractable P, and exchangeable K increased with increasing rate of biosolid application in both soils. These were followed by corresponding increases in wheat nutrient uptake and biomass production, thus demonstrating the importance of this organic material for sustaining production in soils of low immediate fertility. Compared to the NH4Cl treatment (50 kg N ha–1 equivalent), biosolid application rates of 5% and 10% had higher available soil nutrients, similar or higher nutrient uptake and higher wheat biomass. But only an application of 10% biosolids provided sufficient N levels for wheat in the surface soil, and even higher applications were required for providing sufficient N and P in the Bt horizon.  相似文献   

17.
Soil organic matter improves the physical, chemical and biological properties of soil, and crop residue recycling is an important factor influencing soil organic matter levels. We studied the impact of continuous application of rice straw compost either alone or in conjunction with inorganic fertilizers on aggregate stability and distribution of carbon (C) and nitrogen (N) in different aggregate fractions after 10 cycles of rice–wheat cropping on a sandy loam soil at Punjab Agricultural University research farm, Ludhiana, India. Changes in water stable aggregates (WSA), mean weight diameter (MWD), aggregate-associated C and N, total soil C and N, relative to control and inorganically fertilized soil were measured. Total WSA were significantly (p = 0.05) higher for soils when rice straw compost either alone or in combination with inorganic fertilizers was applied as compared to control. The application of rice straw compost either alone or in combination with inorganic fertilizers increased the macroaggregate size fractions except for 0.25–0.50 mm fraction. The MWD was significantly (p = 0.05) higher in plots receiving rice straw compost either alone at 8 tonnes ha−1 (0.51 mm at wheat harvest and 0.41 mm at rice harvest) or at 2 tonnes ha−1 in combination with inorganic fertilizers (0.43 and 0.38 mm) as compared to control (0.34 and 0.33 mm) or inorganically fertilized plots (0.33 and 0.31 mm). The macroaggregates had higher C and N density compared to microaggregates. Application of rice straw compost at 2 tonnes ha−1 along with inorganic fertilizers (IN + 2RSC) increased C and N concentration significantly over control. The C and N concentration increased further when rice straw compost at 8 tonnes ha−1 (8RSC) was added. It is concluded that soils can be rehabilitated and can sustain the soil C and N levels with the continuous application of rice straw compost either alone or in combination with inorganic fertilizers. This will also help in controlling the rising levels of atmospheric carbon dioxide.  相似文献   

18.
湖北省4种水稻土养分状况的系统研究   总被引:1,自引:0,他引:1  
利用土壤养分状况系统研究法对湖北省4个不同地区典型水稻土的养分状况进行了综合评价.土壤化学分析结果表明,鄂东南蕲春县油-稻-稻三熟制区花岗片麻岩母质发育的水稻土(1#土)、鄂中荆门油-稻两熟区Q3母质发育的水稻土(2#土)、鄂北襄樊市麦-稻两熟区Q3母质发育的水稻土(3#土)、江汉平原洪湖市油-稻两熟区近代河流冲积物母质发育的水稻土(4#土),均主要缺乏N、P和K.并且4种土壤N的缺乏程度依次为3#>4#>1#>2#、P为1#>2#>3#>4#、K为1#>3#>4#>2#.以高粱为指示作物的生物试验结果表明,1#土主要缺乏N、P、K,Zn:2#、3#和4#土主要缺乏N、P,同时施K也有一定效果.生物试验结果表明4种土壤N缺乏程度为3#>2#>4#>1#,P为3#>1#>2#>4#.结果显示土壤化学分析和盆栽生物试验判定养分丰缺种类结果基本一致.但两种方法判定的养分缺乏程度顺序不一致.  相似文献   

19.
 The impact of land use (unfertilized continuous maize cropping, unfertilized and fertilized alley cropping with maize, Gliricidia sepium tree fallow, natural fallow) on the soil organic matter (SOM) status and general soil fertility characteristics were investigated for a series of soils representative for the West African moist savanna zone. Three soils from the humid forest zone were also included. In an associated pot experiment, relationships between maize N and P uptake and SOM and general soil characteristics were developed. Soils under natural fallow contained the highest amount of organic C (1.72%), total N (0.158%), and had the highest effective cation exchange capacity (ECEC) [8.9 mEq 100 g–1 dry soil], while the Olsen P content was highest in the fertilized alley cropping plots (13.7 mg kg–1) and lowest under natural fallow (6.3 mg kg–1). The N concentration of the particulate organic matter (POM) was highest in the unfertilized alley cropping plots (2.4%), while the total POM N content was highest under natural fallow (370 mg N kg–1) and lowest in continuously cropped plots (107 mg N kg–1). After addition of all nutrients except N, a highly significant linear relationship (R 2=0.91) was observed between the total N uptake in the shoots and roots of 7-week-old maize and the POM N content for the savanna soils. POM in the humid forest soils was presumably protected from decomposition due to its higher silt and clay content. After addition of all nutrients except P, the total maize P uptake was linearly related to the Olsen P content. R 2 increased from 0.56 to 0.67 in a multiple linear regression analysis including the Olsen P content and clay content (which explained 11% of the variation in P uptake). Both the SOM status and N availability were shown to be improved in land-use systems with organic matter additions, while only the addition of P fertilizer could improve P availability. Received: 9 April 1999  相似文献   

20.
A field experiment was conducted for 3 crop years (July‐June) at the Indian Agricultural Research Institute, New Delhi to study the effects of Sesbania and cowpea green manuring (GM) and incorporation of mungbean residues after harvesting grain, Leucaena loppings, FYM and wheat straw incorporation before planting rice and application of 0,40,80 and 120 kg N ha?1 to rice on the soil organic carbon (SOC), alkaline permanganate oxidizable N (APO‐N), 0.5 M sodium bicarbonate extractable P (SBC‐P) and 1N ammonium acetate exchangeable K (AAE‐K) in surface 0–15 cm soil after the harvest of rice and wheat grown in sequence. Green manuring and addition of organic residues prevented the decline in SOC. On the other hand addition of N fertilizer tended to decrease SOC after rice harvest. On the contrary application of green manures, organic residues, FYM and fertilizer N increased APO‐N, which indicates the benefit of these treatments to a more labile soil organic N pool. Also application of green manures, organic residues, FYM and fertilizer N increased SBC‐P. Not much change was observed in AAE‐K by the treatments applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号