首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 598 毫秒
1.
We studied the vertical patterns of δ15nitrogen in total N and exchangeable NH4+-N through soil profiles in diverse alpine and tundra ecosystems. Soil samples were analyzed from 11 sites located in three mountain areas: NW Caucasus (Russia), the Khibiny Mountains (NW Russia) and Abisko region (N Sweden). Despite differences in the profile patterns of organic matter, nitrogen accumulation and nitrogen availability, we found consistent patterns of 15N distribution through all studied soil profiles. The δ15N values of total N were in general about zero or positive in the surface horizon and increased with soil depth. In contrast with total N, the δ15N values of exchangeable NH4+-N were in general about zero or negative in the surface horizons and decreased with soil depth. NH4+-N was significantly 15N-depleted compared with total N in all mineral horizons, while in the surface organic horizons differences between isotopic composition of total N and NH4+-N were mostly not significant. We do not know the exact mechanism responsible for 15N depletion of NH4+-N with soil depth and further research needs to evaluate the contributions of natural processes (higher nitrification activity and biological immobilization of “lighter” NH4+-N near the soil surface) or artifacts of methodological procedure (contribution of the 15N-enriched microbial N and dissolved organic N near the soil surface). Nevertheless, our finding gives a new possibility to interpret variability in foliar δ15N values of plant species with different rooting depth in alpine and tundra ecosystems, because plants with deeper root systems can probably consume “lighter” rather than “heavier” NH4+-N.  相似文献   

2.
为了探究牛肉及副产物中稳定碳、氮同位素在加工过程中的变化规律,确证稳定碳、氮同位素在牛肉加工制品产地溯源中的稳定性和有效性。本试验通过对牛肉进行不同时间的水煮、烤制和油炸3种处理,其中水煮和烤制加工时间分别为5、10、15、20、25和30 min,油炸加工时间分别为1、2、3、4和5 min;采用元素分析仪-稳定同位素比率质谱仪(EA-IRMS)测定脱脂牛肉、粗脂肪及副产物中δ13C和δ15N值。结果表明,脱脂牛肉中δ13C值在水煮、烤制和油炸3种加工方式不同加工时间之间均无显著差异,水煮和烤制后粗脂肪中δ13C值无显著变化,油炸后的牛肉粗脂肪δ13C值主要受植物油的影响,加工方式及加工时间对其无显著影响;水煮脱脂牛肉δ15N值在加工25、30 min时与对照组牛肉存在显著差异,但平均差值仅为0.3‰~0.9‰。牛肉稳定碳、氮同位素在不同加工过程中分馏效应较小,可有效用于牛肉加工半成品及成品的原产地溯源。  相似文献   

3.
Ingrid Kgel-Knabner 《Geoderma》1997,80(3-4):243-270
Nuclear magnetic resonance (NMR) is a valuable tool for the characterization of soil organic matter and humification processes in soils. This review highlights soil organic matter studies based mainly on solid-state 13C and 15N NMR spectroscopy and some emerging applications, that may provide significant progress in our knowledge on soil organic matter. A major advantage of Nmr spectroscopy is that it can be used as a non-invasive method for solid soil samples or soil fractions. Although resolution is limited, one can obtain an overview on the organic matter structures present in the soil sample. Application of 13C and 15N NMR to soils has, for a long time, been confined to the study of bulk soils or humic extracts for structural characterization. The transformations of soil organic C and N are now being investigated after addition of 13C- and 15N-labelled parent materials to the soil and following their evolution in different C and N pools. With labelling techniques it is also possible to study the interaction of organic pollutants with soil organic matter. Contamination of a soil with man-made additives, such as soot or brown coal dust, can also be detected in soils or individual soil fractions.  相似文献   

4.
Conversion of forests to agricultural land in the American tropics, through traditional agricultural practices such as shifting cultivation, has not been able to maintain stocks of soil organic carbon (SOC), and increasing population pressure has led to shortened fallow periods, causing further losses of soil fertility. However, land management practices such as agroforestry can provide a sustainable alternative to single cropping because of its ability to maintain or increase the SOC pool. This study quantified SOC and nitrogen (N) pools, gross SOC turnover, residue stabilization efficiency (RSEAC) in the alley crop, soil δ13C partitioning, C3-C abundance and δ15N dynamics in 19- and 10-year Gliricidia sepium and Erythrina poeppigiana alley cropping system. Each system was studied at two fertilizer levels (tree prunings only [−N or −A], and tree prunings plus chicken manure [+N], or Arachis pintoi as a groundcover [+A]), and was compared to a sole crop system. The SOC and N pools were significantly higher (p < 0.05) in the 19-year-old alley crop compared to the sole crop, but not significantly different (p < 0.05) in the 10-year-old system. Soil C and N (%) showed a similar trend as that of the SOC and N pools in both 19- and 10-year-old systems. Gross SOC turnover, to a 20 cm depth, ranged from 12 to 21 years in the 19-year-old alley crop compared to 50 years in the sole crop, and from 20 to 32 years in the 10-year-old alley crop compared to 106 years in the sole crop. The RSEAC ranged from 10% to 58% in the 19-year-old system, and from 3% to 43% in the 10-year-old system. The δ13C signature of the soil shifted significantly (p < 0.05) towards that of C3 vegetation in the alley crop due to the greater input of organic residues from tree prunings compared to the sole crop. The proportion of input from tree prunings only in the 19-year-old alley crop ranged from 14% to 20%, and from 9% to 11% in the 10-year-old system to a soil depth of 20 cm. The δ15N signature of the soil showed two patterns: that of the 19-year-old system being enriched in δ15N, and that of the 10-year-old system being depleted in δ15N compared to the sole crop. The addition of manure in the 19-year-old system has enriched the soil δ15N and in the 10-year-old system the soil was depleted due to the N2-fixing groundcover A. pintoi.  相似文献   

5.
An incubation experiment was carried out to investigate whether salinity at high pH has negative effects on microbial substrate use, i.e. the mineralization of the amendment to CO2 and inorganic N and the incorporation of amendment C into microbial biomass C. In order to exploit natural differences in the 13C/12C ratio, substrate from two C4 plants, i.e. highly decomposed and N-rich sugarcane filter cake and less decomposed N-poor maize leaf straw, were added to two alkaline Pakistani soils differing in salinity, which had previously been cultivated with C3 plants. In soil 1, the additional CO2 evolution was equivalent to 65% of the added amount in the maize straw treatment and to 35% in the filter cake treatment. In the more saline soil 2, the respective figures were 56% and 32%. The maize straw amendment led to an identical immobilization of approximately 48 μg N g−1 soil over the 56-day incubation in both soils compared with the control soils. In the filter cake treatment, the amount of inorganic N immobilized was 8.5 μg N g−1 higher in soil 1 than in soil 2 compared with the control soils. In the control treatment, the content of microbial biomass C3-C in soil 1 was twice that in soil 2 throughout the incubation. This fraction declined by about 30% during the incubation in both soils. The two amendments replaced initially similar absolute amounts of the autochthonous microbial biomass C, i.e. 50% of the original microbial biomass C in soil 1 and almost 90% in soil 2. The highest contents of microbial biomass C4-C were equivalent to 7% (filter cake) and 11% (maize straw) of the added C. In soil 2, the corresponding values were 14% lower. Increasing salinity had no direct negative effects on microbial substrate use in the present two soils. Consequently, the differences in soil microbial biomass contents are most likely caused indirectly by salinity-induced reduction in plant growth rather than directly by negative effects of salinity on soil microorganisms.  相似文献   

6.
为探讨锶(Sr)、碳(C)、氮(N)稳定同位素比质谱应用于我国进口大豆产地溯源的可行性,本试验利用热电离质谱检测进口大豆中87Sr/86Sr,利用稳定同位素比质谱仪检测进口大豆中的δ13C和δ15N,利用SPSS软件对进口自巴西、美国和阿根廷的大豆87Sr/86Sr比值、δ13C和δ15N进行统计分析。结果表明,不同产地国大豆样本中的87Sr/86Sr比值、δ13C和δ15N呈正态分布;方差分析和事后多重比较分析结果表明,不同产地国大豆样本中的87Sr/86Sr比值、δ13C和δ15N有显著差异(P<0.05);利用大豆样本中的87Sr/86Sr比值、δ13C和δ15N对进口大豆产地国进行判别分析,进口自阿根廷的大豆样本与进口自美国和巴西的大豆样本判别正确率达100%,3个主要大豆进口国大豆样本总体判别正确率达到82.4%。综上所述,利用87Sr/86Sr比值、δ13C和δ15N能够初步对进口自不同国家的大豆进行产地溯源和判别,为我国进口大豆产地国鉴别提供技术支持。  相似文献   

7.
Nitrogenous fertilisers are under consideration for promoting the growth of nursery-reared hoop pine (Araucaria cunninghamii Alton ex A. Cunn) seedlings in the establishment phase of second rotation (2R) plantations. Using ^15N- labelled fertilisers, we investigated the effect of different forms (ammonium sulphate, ammonium nitrate, potassium nitrate and urea) and rates of application (0, 150 and 300 mg N kg^-1 dried soil) of fertilisers on the growth, ^15N recovery and carbon isotope composition (δ^13C) of hoop pine seedlings in a 12-month glasshouse trial in southeast Queensland, Australia. The ^15N-labelled fertilisers were applied to nursery-reared hoop pine seedlings, which were then grown in pots, containing ca. 1.2 kg dried soil, under well watered conditions for 12 months. Four seedlings from each treatment were harvested at 4-month intervals, divided into roots, stem and foliage, with a further subdivision for new and old foliage, and then analysed for ^15N, total N, δ^13C and total C. There was no significant response in the seedling growth to the form or rate of application of nitrogen (N) fertiliser within the 12-month period, indicating that the seedlings did not experience N deficiency when grown on second rotation hoop pine soils. While the combined ^15N recovery from soil and plant remained at around 70% throughout the experiment, the proportion of ^15N recovered from the plants increasing steadily over time. Nitrate containing fertilisers at 150 mg N kg^-1 soil gradually increased seedling foliage δ^13C over the 12-month period, indicating an increase in seedling water use efficiency.  相似文献   

8.
Changes in some soil chemical, including 15N values, and biochemical properties (microbial C, FDA hydrolysis, glucosidase and urease activities) due to two tillage systems, conventional tillage (CT) and no-tillage (NT), were evaluated in an acid soil from temperate humid zone (NW of Spain) and compared with values obtained for a reference forest soil. The results showed that in the surface layer (0–5 cm depth) tillage tended to increase soil pH and to decrease organic matter levels and microbial biomass and activity values. The data also indicated that 8 years of NT, compared to CT, resulted in greater organic matter content and increased microbial biomass and activity, the changes being more pronounced for the microbial properties. Adoption of NT resulted in an increase of soil C storage of 1.24 Mg C ha−1 year−1 with regard to CT. The suitability of 15N as a potential tracer of land-use in this acid soil was also confirmed.  相似文献   

9.
Long-term field experiments are among the best means to predict soil management impacts on soil carbon storage. Soil organic carbon (SOC) and natural abundance 13C (δ13C) were sensitive to tillage, stover harvest, and nitrogen (N) management during 13 years of continuous corn (Zea mays L.), grown on a Haplic Chernozem soil in Minnesota. Contents of SOC in the 0–15 cm layer in the annually-tilled [moldboard (MB) and chisel (CH)] plots decreased slightly with years of corn after a low input mixture of alfalfa (Medicago sativum L.) and oat (Avena sativa L.) for pasture; stover harvest had no effect. Storage of SOC in no-till (NT) plots with stover harvested remained nearly unchanged at 55 Mg ha−1 with time, while that with stover returned increased about 14%. The measured δ13C increased steadily with years of corn cropping in all treatments; the NT with stover return had the highest increase. The N fertilization effects on SOC and δ13C were most evident when stover was returned to NT plots. In the 15–30 cm depth, SOC storage decreased and δ13C values increased with years of corn cropping under NT, especially when stover was harvested. There was no consistent temporal trend in SOC storage and δ13C values in the 15–30 cm depth when plots received annual MB or CH tillage. The amount of available corn residue that was retained in SOC storage was influenced by all three management factors. Corn-derived SOC in the 0–15 cm and the 15–30 cm layers of the NT system combined was largest with 200 kg N ha−1 and no stover harvest. The MB and CH tillage systems did not influence soil storage of corn-derived SOC in either the 0–15 or 15–30 cm layers. The corn-derived SOC as a fraction of SOC after 13 years fell into three ranges: 0.05 for the NT with stover harvested, 0.15 for the NT with no stover harvest, and 0.09–0.10 for treatments with annual tillage; N rate had no effect on this fraction. Corn-derived SOC expressed as a fraction of C returned was positively biased when C returned in the roots was estimated from recovery of root biomass. The half-life for decomposition of the original or relic SOC was longer when stover was returned, shortened when stover was harvested and N applied, and sharply lengthened when stover was not harvested and N was partially mixed with the stover. Separating SOC storage into relic and current crop sources has significantly improved our understanding of the main and interacting effects of tillage, crop residue, and N fertilization for managing SOC accumulation in soil.  相似文献   

10.
Pere Rovira  V. Ramn Vallejo 《Geoderma》2008,144(3-4):517-534
The current view on the relationship between the δ13C of pedogenic carbonates and soil organic matter is based on static studies, in which soil profiles are analysed at a given moment of their development. A dynamic approach to this question should also be possible by studying under field conditions how the δ13C of carbonates changes as organic matter decomposes. No such study has been undertaken owing to the slowness of the changes in the δ13C of carbonates, since it has been calculated that a detectable change will occur only after millenia. Nevertheless, this may not be true where soil CO2 efflux is intense, as expected in soil zones with high microbial activity. In this paper we test the latter assumption by incubating mixtures of plant material and carbonate-rich red earth in the field at depths of 5, 20 and 40 cm. Four types of plant material were tested: Medicago sativa, Eucalyptus globulus, Quercus ilex and Pinus halepensis. Because the isotopic composition of these plant materials is known, we can determine the isotopic composition of the respired C and study how it relates to the (expected) changes in the δ13C. After two years of field incubation, the changes in δ13C of carbonates were high enough to be reliably detected and quantified, thus showing that the isotopic composition of soil carbonates can change quite rapidly in biologically active soil horizons. The observed changes are possible only if we assume that the increase in δ13C in the overall path respired C → pedogenic carbonate is much higher than the usually applied standard factors (about 15‰). These enrichments can be explained by assuming, as does the currently accepted paradigm, that the precipitation of new carbonates occurs in an open system in which the penetration of free-air CO2 plays a major role. On the other hand, these enrichments can also be explained by an alternative interpretation, which assumes that the dissolution–precipitation carbonate cycles occur in systems that can be at least temporarily closed. Thus, we suggest that both possibilities (carbonate dissolution and precipitation in either an open or closed system) can coexist in a given soil, even though one or the other will dominate in any given time period.  相似文献   

11.
Crop management practices have potential to enhance subsoil C and N sequestration in the southern U.S., but effects may vary with tillage regime and cropping sequence. The objective of this study was to determine the impacts of tillage and soybean cropping sequence on the depth distribution of soil organic C (SOC), dissolved organic C (DOC), and total N after 20 years of treatment imposition for a silty clay loam soil in central Texas. A continuous soybean monoculture, a wheat–soybean doublecrop, and a sorghum–wheat–soybean rotation were established under both conventional (CT) and no tillage (NT). Soil was sampled after soybean harvest and sectioned into 0–5, 5–15, 15–30, 30–55, 55–80, and 80–105 cm depth intervals. Both tillage and cropping intensity influenced C and N dynamics in surface and subsurface soils. No tillage increased SOC, DOC, and total N compared to CT to a 30 cm depth for continuous soybean, but to 55 cm depths for the more intensive sorghum–wheat–soybean rotation and wheat–soybean doublecrop. Averaged from 0 to 105 cm, NT increased SOC, DOC, and total N by 32, 22, and 34%, respectively, compared to CT. Intensive cropping increased SOC and total N at depths to 55 cm compared to continuous soybean, regardless of tillage regime. Continuous soybean had significantly lower SOC (5.3 g kg−1) than sorghum–wheat–soybean (6.4 g kg−1) and wheat–soybean (6.1 g kg−1), and 19% lower total N than other cropping sequences. Dissolved organic C was also significantly higher for sorghum–wheat–soybean (139 mg C kg−1) than wheat–soybean (92 mg C kg−1) and continuous soybean (100 mg C kg−1). The depth distribution of SOC, DOC, and total N indicated treatment effects below the maximum tillage depth (25 cm), suggesting that roots, or translocation of dissolved organic matter from surface soils, contributed to higher soil organic matter levels under NT than CT in subsurface soils. High-intensity cropping sequences, coupled with NT, resulted in the highest soil organic matter levels, demonstrating potential for C and N sequestration for subsurface soils in the southern U.S.  相似文献   

12.
While the benefits of earthworms to crop production are widely acknowledged, the mechanisms involved are poorly understood. We examined the effects of an anecic earthworm (Lumbricus terrestris) on the distribution of plant residue N in a corn (Zea mays)/soil system. Soil (mixed Ap and B horizons) mesocosms (10 cm diameter, 39 cm deep) were amended with 15N-labeled corn litter, inoculated with one earthworm per mesocosm (WORM) or none (CTRL), and pre-incubated for 1, 2 or 3 weeks. Earthworms and remaining plant residues were removed and sweet corn grown in the mesocosms in a greenhouse for 3 weeks. Litter, earthworms, shoots, roots and bulk and burrow soil were analyzed for total N and 15N. Plant and earthworm biomass were also determined. Earthworms had no significant effect on the N content of shoots, roots or bulk soil. Recovery of 15N ranged from 92.6 to 101.9% in CTRL and 60.2 to 83.2% in the WORM treatment. The 15N content of bulk soil in the WORM treatment was significantly higher than in CTRL and increased with pre-incubation time. Excess at.% 15N of burrow soil was 10–100 times higher than in bulk soil. Incorporation of 15N by shoots and roots was significantly higher in the WORM treatment and increased significantly with pre-incubation time only in the WORM treatment. In WORM mesocosms pre-incubated for 3 weeks, the distribution of added 15N was 9.8% in litter, 6.5% in plant, 31.5% in soil, 12.0% in earthworms and 39.8% presumably lost as gas; in CTRL mesocosms, the values were 75.7% in litter, 3.2% in plant, 13.7% in soil and 7.4% in presumed gas losses. The activities of L. terrestris altered the distribution of plant residue N significantly, increasing the transfer of N to plants and soil and enhancing losses of N in the gas phase as pre-incubation time increased.  相似文献   

13.
夏魏  聂晶  李鑫  李春霖  邵圣枝  李祖光  袁玉伟 《核农学报》2022,36(11):2183-2189
为探究茶树不同叶位的传统稳定同位素分布及其随时间的变化特征,本研究以龙井43#品种茶树为研究对象,采用元素分析-同位素比值质谱仪(EA-IRMS)对不同叶位叶片的碳同位素(δ13C)、氮同位素(δ15N)、氢同位素(δ2H)和氧同位素(δ18O)进行分析。结果表明,随叶位自上向下递增,叶片中δ13C、 δ15N和δ2H显著贫化,而δ18O呈现相对较弱的贫化,且第2~第5叶位叶片的同位素比值最高(21.0‰~25.0‰),相邻叶位的同位素分馏系数差异不大。此外,随着采样时间的变化和环境气候影响,前三叶位叶片的δ13C和δ15N总体呈现富集特征,而δ2H和δ18O出现先贫化后富集的变化特征。本研究结果为探究茶树不同叶位茶叶传统稳定同位素的分布提供了数据支撑,也为研究茶叶分馏机制和数据库构建奠定了基础。  相似文献   

14.
An 8-yr (1998–2005) field experiment was conducted on a Gray Luvisol (Boralf) soil near Star City, Saskatchewan, Canada, to determine the effects of tillage (no-tillage – NT and conventional tillage – CT), straw management (straw retained – R and straw not retained – NR) and N fertilizer (0, 40, 80 and 120 kg N ha−1, except no N to pea (Pisum sativum L.) phase of the rotation) on seed and straw yield, mass of N and C in crop, organic C and N, inorganic N and aggregation in soil, and nitrous oxide (N2O) emissions for a second 4-yr rotation cycle (2002–2005). The plots were seeded to barley (Hordeum vulgare L.) in 2002, pea in 2003, wheat (Triticum aestivum L.) in 2004 and canola (Brassica napus L.) in 2005. Seed, straw and chaff yield, root mass, and mass of N and C in crop increased with increasing N rate for barley in 2002, wheat in 2004 and canola in 2005. No-till produced greater seed (by 51%), straw (23%) and chaff (13%) yield of barley than CT in 2002, but seed yield for wheat in 2004, and seed and straw yield for canola in 2005 were greater under CT than NT. Straw retention increased seed (by 62%), straw (by 43%) and chaff (by 12%) yield, and root mass (by 11%) compared to straw removal for barley in 2002, wheat in 2004, and seed and straw yield for pea in 2003. No-till resulted in greater mass of N in seed, and mass of C in seed, straw, chaff and root than CT for barley in 2002, but mass of N and C were greater under CT than NT for wheat in 2004 and for canola in 2005 in many cases. Straw retention had greater mass of N and C in seed, straw, chaff and root in most cases compared to straw removal for barley in 2002, pea in 2003 and wheat in 2004. Soil moisture content in spring was higher under NT than CT and with R than NR in the 0–15 cm depth, with the highest moisture content in the NT + R treatment in many cases. After eight crop seasons, tillage and straw management had no effect on total organic C (TOC) and N (TON) in the 0–15 cm soil, but light fraction organic C (LFOC) and N (LFON), respectively, were greater by 1.275 Mg C ha−1 and 0.031 Mg N ha−1 with R than NR, and also greater by 0.563 Mg C ha−1 and 0.044 Mg N ha−1 under NT than CT. There was no effect of tillage, straw and N fertilization on the NH4-N in soil in most cases, but R treatment had higher NO3-N concentration in the 0–15 cm soil than NR. The NO3-N concentration in the 0–15, 15–30 and 30–60 cm soil layers increased (though small) with increasing N rate. The R treatment had 6.7% lower proportion of fine (<0.83 mm diameter) and 8.6% greater proportion of large (>38.0 mm) dry aggregates, and 4.5 mm larger mean weight diameter (MWD) compared to NR treatment. This suggests a lower potential for soil erosion when crop residues are retained. There was no beneficial effect of elimination of tillage on soil aggregation. The amount of N lost as N2O was higher from N-fertilized (580 g N ha−1) than from zero-N (155 g N ha−1) plots, and also higher in CT (398 g N ha−1) than NT (340 g N ha−1) in some cases. In conclusion, retaining crop residues along with no-tillage improved some soil properties and may also be better for the environment and the sustainability of high crop production. Nitrogen fertilization improved crop production and some soil quality attributes, but also increased the potential for NO3-N leaching and N2O-N emissions, especially when applied in excess of crop requirements.  相似文献   

15.
Fertilizer nitrogen (N) can impact on soil total N and organic carbon (C). The effects of long-term nitrogen (N) applications in continuous winter wheat (Triticum aestivum L.) production systems on total N and organic C in soils has not been studied previously. Deep soil cores were taken from four long-term winter continuous wheat experiments in Oklahoma, on silt loam and clay loam soils, to evaluate differences in total N and C as affected by more than 23 years of annual N applications. When N was applied at rates ≥90 kg ha−1, surface soil (0–30 cm) organic C was either equal to that of the check (no N applied) or slightly greater. Total soil N (0–30 cm) increased at the high N rates at all locations. However, at two locations, total soil N decreased at low N rates, indicating the presence of priming (increased net mineralization of organic N pools when low rates of fertilizer N are applied). At these two same sites, soil–plant inorganic N buffering (amount of N that could be applied in excess of that needed for maximum yield without resulting in increased soil profile inorganic N accumulation) was greater compared to the other two sites where no evidence of priming was found. In general, C:N ratios increased at the low rates of applied N and then decreased to levels below that found in check plots at high N rates (≥134 kg N ha−1 yr−1). Combined surface (0–30 cm) soil analyses of total N and organic C were useful in detecting where priming had taken place and where soil–plant inorganic N buffering was expected to be high in these long-term N fertilization experiments. Predictability of the priming effect combined with soil–plant inorganic N buffering should assist us in establishing environmentally safe N rates. Soil organic C increased when N was applied at rates in excess of that required for maximum yield.  相似文献   

16.
Soil microbial immobilization and plant uptake of N were evaluated for three forest types in Kochi, Shikoku district. During 196-d laboratory incubation, soil NO3-N production in the Hinoki cypress forest was negligible for the initial 40 d and then rapidly increased, whereas NO3-N production was rapid from the beginning in Japanese cedar and deciduous hardwood forests. Microbial immobilization of the labeled 15N decreased in the order of NH4-N>glycine-N>NO3-N. The 15N immobilization was higher for soil in the Hinoki cypress forest than other two soils. The delayed NO3-N production in the Hinoki cypress forest was likely related with low availability of NH4-N due to NH4-N immobilization and substantial NO3-N immobilization. In the field experiment, 15N uptake by roots decreased in the order of NH4-N>NO3-N>glycine-N. The absorption of the labeled 13C suggested direct uptake of organic N. The preference of N forms by root uptake was not different among forest types. Trees in three forest types can absorb inorganic and organic forms of N, suggesting trees absorb the N form that is the most abundant in the soil.  相似文献   

17.
严重退化红壤植被恢复后有机质富集和团聚体稳定性   总被引:3,自引:0,他引:3  
ZHANG Bin  PENG Xin-Hua 《土壤圈》2006,16(6):699-706
Three types of soils: an eroded barren soil under continuous fallow, an eroded soil transplanted with Lespedeza shrubs (Lespedeza bieolor), and an eroded soil transplanted with camphor tree (Cinnaraomum camphora) were investigated to quantify organic matter pools and aggregates in reforested soils using physical fractionation techniques and to determine aggregate stability in relation to the enrichment of soil organic carbon (SOC). Soil organic matter (SOM) was physically fractionalized into free particulate organic matter (fPOM), occluded particulate organic matter (oPOM), and mineralassociated organic matter (mOM). The SOM was concentrated on the surface soil (0 5 cm), with an average C sequestration rate of 20-25 g C m^-2 year^-1 over 14 years. As compared to the eroded barren land, organic C content of fPOM, oPOM, and mOM fractions of the soil under Lespedeza and under camphor tree increased 12-15, 45-54, and 3.1-3.5 times, respectively. A linear relationship was found between aggregate stability and organic C (r^2 = 0.45, P 〈 0.01), oPOM (r^2 = 0.34, P 〈 0.05), and roOM (r^2 = 0.46, P 〈 0.01) of aggregates. The enrichment of organic C improved aggregate stability of the soil under Lespedeza but not that under camphor tree. However, further research is needed on the physical and biological processes involved in the interaction of soil aggregation and SOC sequestration in ecosystem.  相似文献   

18.
We evaluated the influence of several organic matter management practices on the characteristics of carbohydrates in water-stable aggregates and soil aggregate stability at three Nigerian locations (Abakiliki, Nsukka and Umudike) where forests had been converted to arable farming. The effect of management practices to enhance aggregate stability was site-specific. The highest aggregate stability was obtained with Gliricidia sepium at Abakiliki, with Cajanus cajan followed by rice mill wastes (RW) at Nsukka and with the forested soil at Umudike. While none of the treatments at all sites was able to enhance the C and N contents of the soils to the levels obtained in the forested sites, a net improvement in carbohydrate and organic carbon (OC) content was found for some management practices. The carbohydrate status increased with G. sepium at Abakiliki, and with Dactylodenae bacterii alone or in combination with Pentaclethra species at Umudike, while at Nsukka all organic inputs increased carbohydrate content over the control and forested soils. However, neither total OC nor the carbohydrate content were significantly correlated to the variability in aggregate stability of these soils. The δ13C values found for acidic hydrolysates were constant within the soil aggregate sizes and generally distributed around −29 to −30‰, suggesting that the OC from these sites originated from C3 plants. Our results indicate that in these tropical Nigerian soils, aggregate stability and OC content are generally preserved by alley-cropping in well structured soil, whereas treatments with organic wastes are sustainable management practices in more fragile soils.  相似文献   

19.
The effect of winter weed control (WWC) management on 14C-atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) mineralization was investigated in an Entic Haplustoll in Argentina. Three WWC managements were selected: Chemical Fallow (CF) and Cereal Cover Crop (CCC), both under no-tillage, and Reduced Tillage (RT) with chisel and moldboard plow. Soil was sampled at two depths: 0–5 and 5–10 cm, to evaluate the soil stratification induced by the tillage system. To distinguish differences in atrazine degradation in soils with and without previous history of atrazine application two crop sequences were selected: continuous soybean [Glycine max L., Merr.] (CS) without previous atrazine exposure, and soybean–maize (Zea mays L.) rotation (SM) with atrazine application every winter and in alternate springs. The release of 14C-CO2 during laboratory incubations of soils treated with ring labelled 14C-atrazine was determined. Soil organic matter (SOM) distribution was determined with depth and among three soil size fractions: 200–2000 μm, 50–200 μm and <50 μm. Previous atrazine application enhanced atrazine degrading microorganims. Atrazine mineralization was influenced by both WWC management and the tillage system. Chemical fallow showed the highest atrazine mineralization in the two crop sequences. Depth stratification in atrazine degradation was observed in the two WWC treatments under the no-tillage. Depth stratification in the content of soil organic C and relative accumulation of organic C in coarsest fractions (200–2000 and 50–200 μm) were observed mainly in no-till systems. Depth stratification of atrazine degrading activity was mainly correlated to the stratification of fresh organic matter associated with the coarsest fractions (200–2000 μm). Atrazine persistence in soil is strongly affected by soil use and management, which can lead to safe atrazine use through selection of appropriate agricultural practices.  相似文献   

20.
The effect of application dose and soil organic matter (SOM) stratification on changes in atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) extractable residues (ER) were investigated. Two soils [Entic Haplustoll (EH) and Typic Hapludoll (TH)] with contrasting SOM content and form and without previous atrazine exposure were selected. Sampling was carried out at two depths: 0–2 and 2–5 cm. Atrazine ER were measured at 0, 3, 7, 14, 28, and 56 days in laboratory incubation. Atrazine concentration recovered 1 h after of its application (Ct0) was used as an index of the soil capacity to reduce the atrazine extractable fraction. SOM stratification was studied by means of physical fractionation. In both soils, the higher OC concentration was found in the 200–2000 μm fraction (OCf 200–2000). Soils differed in terms of the OCf 50–200/OCf 200–2000 ratio. This ratio increased with depth in EH soil: 0.23 (0–2 cm) and 2.00 (2–5 cm). In TH soil, the ratio was 0.80 (0–2 cm) and 0.50 (2–5 cm). The t1/2 values ranged from 9 to 19 days, depending on soil type and atrazine application dose. The upper layer Ct0 and k were higher for higher atrazine doses. Implementation of a split application dose of atrazine may be an effective alternative to extend its half-life in soil solution, as well as involving a lower potential risk of soil accumulation or vertical movement in the soil profile towards deep soil layers and groundwater.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号