首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eprinomectin is only available as a topically applied anthelmintic for dairy cattle. To determine whether eprinomectin can be applied as an injectable formulation in dairy cattle, a novel injectable formulation was developed and was subcutaneously delivered to four lactating dairy cattle at a dose rate of 0.2 mg/ kg. Plasma and milk samples were collected. The concentrations of eprinomectin in all samples were determined by HPLC. The peak plasma concentration (Cmax)of 44.0±24.2 ng/ml occurred 39±19.3 h after subcutaneous administration, equivalent to the Cmax (43.76±18.23 ng/ml) previously reported for dairy cattle after a pour-on administration of 0.5 mg/kg eprinomectin. The area under the plasma concentration–time curve (AUC) after subcutaneous administration was 7354±1861 (ng h)/ml, higher than that obtained after pour-on delivery (5737.68±412.80 (ng h)/ml). The mean residence time (MRT) of the drug in plasma was 211±55.2 h. Eprinomectin was detected in the milk at the second sampling time. The concentration of drug in milk was parallel to that in plasma, with a milk to plasma ratio of 0.16±0.01. The highest detected concentration of eprinomectin in milk was 9.0 ng/ml, below the maximum residue limit (MRL) of eprinomectin in milk established by the Joint FAO/WHO Expert Committee on Food Additives in 2000. The amount of eprinomectin recovered in the milk during this trial was 0.39%±0.08% of the total administered dose. This study demonstrates that subcutaneous administration of eprinomectin led to higher bioavailability and a lower dose than a pour-on application, and that an injectable formulation of eprinomectin may be applied in dairy cattle with a zero withdrawal period.  相似文献   

2.
The study objective was to determine the pharmacokinetics and clinical effects of an extended‐release 5% eprinomectin formulation (Longrange®) following subcutaneous (s.c.) injection in healthy (n = 6) and mange‐infected (n = 4) adult alpacas. High‐performance liquid chromatography was used to analyze plasma samples obtained at regular intervals for 161 days following a single 5 mg/kg injection s.c. in healthy alpacas, and for 5 days following each dose (3 treatments, 2 months apart) in mange‐affected animals. Skin scrapings and biopsies were performed pre‐ and post‐treatment at two comparable sites in alpacas with mange. Four alpacas served as healthy controls. Eprinomectin plasma concentrations showed a biphasic peak (CMAX‐1: 5.72 ± 3.25 ng/mL; CMAX‐2: 6.06 ± 2.47 ng/mL) in all animals at 3.88 ± 5.16 days and 77 ± 12.52 days, respectively. Eprinomectin plasma concentrations remained above 1.27 ± 0.96 ng/mL for up to 120 days. Hematocrit (35.8 vs. 31.3%, < 0.003) and albumin (3.5 vs. 2.8 g/dL P < 0.006) reduced significantly over 6 months in multidose animals, while fecal egg counts did not differ between groups. Self‐limiting injection site reactions occurred in 9 of 10 animals. Pre‐ and post‐treatment skin biopsies showed reduced hyperkeratosis, but increased fibrosis, with 1 of 4 alpacas remaining positive on skin scraping for mange. In conclusion, alpacas require a higher eprinomectin dose (5.0 mg/kg s.c.) than cattle, to reach comparable plasma concentrations.  相似文献   

3.
Radioimmunology was used to determine leptin and ghrelin levels in sow colostrum and milk in relation to those in sow and neonatal pig blood plasma and to the body weight of piglets during the first week of lactation. The highest concentration of leptin was found in colostrum on the second day of lactation (69.3 ± 6.3 ng/mL). Leptin concentrations in sow plasma were significantly lower than in colostrum/milk (2.19 ± 0.9 ng/mL, P = 0.7692) and were stable in the first 7 days of lactation. Total and active ghrelin concentrations in colostrum/milk were stable in the measured time points (6734 ± 261 pg/mL, P = 0.3397; 831 ± 242 pg/mL, P = 0.3988, respectively). Total ghrelin concentrations in sow plasma were lower than in colostrum/milk. These results indicate that pigs follow a unique species‐specific pattern of leptin and ghrelin synthesis, release and existence, and that the mammary gland is an important source of leptin and ghrelin contained in colostrum/milk.  相似文献   

4.
Some pharmacokinetic parameters of eprinomectin were determined in goats following topical application at a dose rate of 0.5 mg/kg. The plasma concentration versus time data for the drug were analysed using a one-compartment model. The maximum plasma concentration of 5.60±1.01 ng/ml occurred 2.55 days after administration. The area under the concentration–time curve (AUC) was 72.31±11.15 ng day/ml and the mean residence time (MRT) was 9.42±0.43 days. Thus, the systemic availability of eprinomectin to goats was significantly lower than that for cows. The low concentration of eprinomectin in the plasma of goats suggests that the pour-on dose of 0.5 mg/kg would be less effective in this species than in cows. Further relevant information about the optimal dosage and residues in the milk of dairy goats is needed before eprinomectin should be used in this species.  相似文献   

5.
6.
The objective of this study was to investigate the pharmacokinetics and tissue disposition of meloxicam after repeated oral administration in calves. Thirteen male British × Continental beef calves aged 4 to 6 months and weighing 297–392 kg received 0.5 mg/kg meloxicam per os once daily for 4 days. Plasma meloxicam concentrations were determined in 8 calves over 6 days after first treatment. Calves were randomly assigned to be euthanized at 5, 10, 15 (n = 3/timepoint), and 19 days (n = 4) after final administration. Meloxicam concentrations were determined in plasma (LOQ= 0.025 μg/mL) and muscle, liver, kidney, and fat samples (LOQ = 2 ng/g) after extraction using validated LC–MS–MS methods. The mean (± SD) Cmax, Cmin, and Caverage plasma meloxicam concentrations were 4.52 ± 0.87 μg/mL, 2.95 ± 0.77 μg/mL, and 3.84 ± 0.81 μg/mL, respectively. Mean (± SD) tissue meloxicam concentrations were highest in liver (226.67 ± 118.16 ng/g) and kidney samples (52.73 ± 39.01 ng/g) at 5 days after final treatment. Meloxicam concentrations were below the LOQ in all tissues at 15 days after treatment. These findings suggest that tissue from meloxicam‐treated calves will have low residue concentrations by 21 days after repeated oral administration.  相似文献   

7.
A tulathromycin concentration and pharmacokinetic parameters in plasma and lung tissue from healthy pigs and Actinobacillus pleuropneumoniae (App)‐infected pigs were compared. Tulathromycin was administered intramuscularly (i.m.) to all pigs at a single dose of 2.5 mg/kg. Blood and lung tissue samples were collected during 33 days postdrug application. Tulathromycin concentration in plasma and lung was determined by high‐performance liquid chromatography with tandem mass spectrometry (LC‐MS/MS) method. The mean maximum plasma concentration (Cmax) in healthy pigs was 586 ± 71 ng/mL, reached by 0.5 h, while the mean value for Cmax of tulathromycin in infected pigs was 386 ± 97 ng/mL after 0.5 h. The mean maximum tulathromycin concentration in lung of healthy group was calculated as 3412 ± 748 ng/g, detected at 12 h, while in pigs with App, the highest concentration in lung was 3337 ± 937 ng/g, determined at 48 h postdosing. The higher plasma and lung concentrations in pigs with no pulmonary inflammation were observed at the first time points sampling after tulathromycin administration, but slower elimination with elimination half‐life t1/2el = 126 h in plasma and t1/2el = 165 h in lung, as well as longer drug persistent in infected pigs, was found.  相似文献   

8.
Eight adult female dairy goats received one subcutaneous administration of tulathromycin at a dosage of 2.5 mg/kg body weight. Blood and milk samples were assayed for tulathromycin and the common fragment of tulathromycin, respectively, using liquid chromatography/mass spectrometry. Pharmacokinetic disposition of tulathromycin was analyzed by a noncompartmental approach. Mean plasma pharmacokinetic parameters (±SD) following single‐dose administration of tulathromycin were as follows: Cmax (121.54 ± 19.01 ng/mL); Tmax (12 ± 12–24 h); area under the curve AUC0→∞ (8324.54 ± 1706.56 ng·h/mL); terminal‐phase rate constant λz (0.01 ± 0.002 h−1); and terminal‐phase rate constant half‐life t1/2λz (67.20 h; harmonic). Mean milk pharmacokinetic parameters (±SD) following 45 days of sampling were as follows: Cmax (1594 ± 379.23 ng/mL); Tmax (12 ± 12–36 h); AUC0→∞ (72,250.51 ± 18,909.57 ng·h/mL); λz (0.005 ± 0.001 h−1); and t1/2λz (155.28 h; harmonic). All goats had injection‐site reactions that diminished in size over time. The conclusions from this study were that tulathromycin residues are detectable in milk samples from adult goats for at least 45 days following subcutaneous administration, this therapeutic option should be reserved for cases where other treatment options have failed, and goat milk should be withheld from the human food chain for at least 45 days following tulathromycin administration.  相似文献   

9.
The objective was to compare plasma lidocaine concentrations when a commercially available 5% lidocaine patch was placed on intact skin vs. an incision. Our hypothesis was that greater absorption of lidocaine would occur from the incision site compared to intact skin. Ten dogs were used in a crossover design. A patch was placed over an incision, and then after a washout period, a patch was placed over intact skin. Plasma lidocaine concentrations were measured at patch placement; 20, 40 and 60 min; and 2, 4, 6, 12, 24, 36, 48, 72 and 96 h after patch placement. After patch removal, the skin was graded using a subjective skin reaction system. No dogs required rescue analgesia, and no toxicity or skin reaction was noted. Mean ± SD AUC and CMAX were 3054.29 ± 1095.93 ng·h/mL and 54.1 ± 15.84 ng/mL in the Incision Group, and 2269.9 ± 1037.08 ng·h/mL and 44.5 ± 16.34 ng/mL in the No‐Incision Group, respectively. The AUC was significantly higher in the Incision Group. The results of the study demonstrate that the actual body exposure to lidocaine was significantly higher when an incision was present compared to intact skin. No adverse effects were observed from either treatment. Efficacy was not evaluated.  相似文献   

10.
Malreddy, P. R., Coetzee, J. F., KuKanich, B., Gehring, R. Pharmacokinetics and milk secretion of gabapentin and meloxicam co‐administered orally in Holstein‐Friesian cows. J. vet. Pharmacol. Therap.  36 , 14–20. Management of neuropathic pain in dairy cattle could be achieved by combination therapy of gabapentin, a GABA analog and meloxicam, an nonsteroidal anti‐inflammatory drug. This study was designed to determine specifically the depletion of these drugs into milk. Six animals received meloxicam at 1 mg/kg and gabapentin at 10 mg/kg, while another group (n = 6) received meloxicam at 1 mg/kg and gabapentin at 20 mg/kg. Plasma and milk drug concentrations were determined over 7 days postadministration by HPLC/MS followed by noncompartmental pharmacokinetic analyses. The mean (±SD) plasma Cmax and Tmax for meloxicam (2.89 ± 0.48 μg/mL and 11.33 ± 4.12 h) were not much different from gabapentin at 10 mg/kg (2.87 ± 0.2 μg/mL and 8 ± 0 h). The mean (±SD) milk Cmax for meloxicam (0.41 ± 80.16 μg/mL) was comparable to gabapentin at 10 mg/kg (0.63 ± 0.13 μg/mL and 12 ± 6.69 h). The mean plasma and milk Cmax for gabapentin at 20 mg/kg P.O. were almost double the values at 10 mg/kg. The mean (±SD) milk to plasma ratio for meloxicam (0.14 ± 0.04) was lower than for gabapentin (0.23 ± 0.06). The results of this study suggest that milk from treated cows will have low drug residue concentration soon after plasma drug concentrations have fallen below effective levels.  相似文献   

11.
Reproductive hormones in serum concentrations of progesterone, estradiol, and testosterone in female Indo-Pacific bottlenose dolphins (Tursiops aduncus, n = 12) housed in Ocean Park Hong Kong were investigated in the present study. Results showed that, onset of puberty of captive Indo-Pacific bottlenose dolphins was at 5 years while sexual maturity was at 6. Average serum progesterone concentrations in non-pregnant sexually mature individuals was 0.33 (0.25–0.97) ng/mL (interquartile), significantly higher than in immature ones 0.26 (0.25–0.38) ng/mL. This study found significant difference in serum estradiol concentrations between individuals at the onset of puberty (9.5 ± 1.7 pg/mL, ±SD) and not (below detection limit 9 pg/mL). A slightly seasonal breeding pattern, with progesterone values tend to be higher from February to October (0.38 [0.25–1.07] ng/mL) was inferred. During pregnancy, serum progesterone concentrations range from 10.54 ± 8.74 ng/mL (indexed month post-conception [IMPC] 0) to 25.49 ± 12.06 ng/mL (IMPC 2), and display a bimodal pattern with 2 peaks in early- (25.49 ± 12.06 ng/mL, IMPC 2) and late-pregnancy (21.71 ± 10.25 ng/mL, IMPC 12), respectively. Serum estradiol concentrations can seldom be detected in early-pregnancy and increase constantly in mid- (9.45 ± 1.83 pg/mL) and late-pregnancy (11.88 ± 3.81 pg/mL), with a spike (15.45 ± 6.78 pg/mL) 1 month prior to delivery. Serum testosterone concentrations elevate significantly in IMPC 7 (0.36 ± 0.10 ng/mL) compared to other months (0.16 ± 0.10 ng/mL) of the year. The present study provides normal concentration profiles for some reproductive hormones in female Indo-Pacific bottlenose dolphins and can contribute to the breeding monitoring of this species. Also, our study would shed further light on the reproductive physiology of small cetaceans.  相似文献   

12.
AIMS: To investigate the plasma disposition and faecal excretion of eprinomectin (EPM) in non-lactating dairy cattle following topical and S/C administration.

METHODS: Holstein dairy cows, 3.5–5 years-old, were selected 20–25 days after being dried off and were randomly allocated to receive EPM either topically (n=5) or S/C (n=5) at dose rates of 0.5 and 0.2?mg/kg bodyweight, respectively. Heparinised blood and faecal samples were collected at various times between 1 hour and 30 days after treatment, and were analysed for concentrations of EPM using high performance liquid chromatography with a fluorescence detector.

RESULTS: The maximum concentration of EPM in plasma (Cmax) and the time to reach Cmax were both greater after S/C administration (59.70 (SD 12.90) ng/mL and 1.30 (SD 0.27) days, respectively) than after topical administration (20.73 (SD 4.04) ng/mL and 4.40 (SD 0.89) days, respectively) (p<0.001). In addition, S/C administration resulted in greater plasma availability (area under the curve; AUC), and a shorter terminal half-life and mean residence time (295.9 (SD 61.47) ng.day/mL; 2.95 (SD 0.74) days and 4.69 (SD 1.01) days, respectively) compared with topical administration (168.2 (SD15.67) ng.day/mL; 4.63 (SD 0.32) days, and 8.23 (SD 0.57) days, respectively) (p<0.01). EPM was detected in faeces between 0.80 (SD 0.45) and 13.6 (SD 4.16) days following S/C administration, and between 1 (SD 0.5) and 20.0 (SD 3.54) days following topical administration. Subcutaneous administration resulted in greater faecal excretion than topical administration, expressed as AUC adjusted for dose (1188.9 (SD 491.64) vs. 311.5 (SD 46.90) ng.day/g; p<0.05). Maximum concentration in faeces was also higher following S/C than topical administration (223.0 (SD 63.96) vs. 99.47 (SD 43.24) ng/g; p<0.01).

CONCLUSIONS: Subcutaneous administration of EPM generated higher plasma concentrations and greater plasma availability compared with topical administration in non-lactating cattle. Although the S/C route provides higher faecal concentrations, the longer faecal persistence of EPM following topical administration may result in more persistent efficacy preventing establishment of incoming nematode larvae in cattle.  相似文献   

13.
Sellers, G., Lin, H. C., G. Riddell, M. G., Ravis, W. R., Lin, Y. J., Duran, S. H., Givens, M.D. Pharmacokinetics of ketamine in plasma and milk of mature Holstein cows. J. vet. Pharmacol. Therap. 33 , 480–484. The purpose of this study was to evaluate the pharmacokinetics of ketamine in mature Holstein cows following administration of a single intravenous (i.v.) dose. Plasma and milk concentrations were determined using a high‐performance liquid chromatography assay. Pharmacokinetic parameters were estimated using a noncompartmental method. Following i.v. administration, plasma Tmax was 0.083 h and plasma Cmax was 18 135 ± 22 720 ng/mL. Plasma AUC was 4484 ± 1,398 ng·h/mL. Plasma t½β was 1.80 ± 0.50 h and mean residence time was 0.794 ± 0.318 h with total body clearance of 1.29 ± 0.70 L/h/kg. The mean plasma steady‐state volume of distribution was calculated as 0.990 ± 0.530 L/kg and volume of distribution based on area was calculated as 3.23 ± 1.51 L/kg. The last measurable time for ketamine detection in plasma was 8.0 h with a mean concentration of 24.9 ± 11.8 ng/mL. Milk Tmax was detected at 0.67 ± 0.26 h with Cmax of 2495 ± 904 ng/mL. Milk AUC till the last time was 6593 ± 2617 ng·h/mL with mean AUC milk to AUC plasma ratio of 1.99 ± 2.15. The last measurable time that ketamine was detected in milk was 44 ± 10.0 h with a mean concentration of 16.0 ± 9.0 ng/mL.  相似文献   

14.
A study on pharmacokinetics of ponazuril in piglets was conducted after a single oral dose of 5.0 mg/kg b.w. Plasma concentrations were measured by high‐performance liquid chromatography assay with UV detector at 255‐nm wavelength. Pharmacokinetic parameters were derived by use of a standard noncompartmental pharmacokinetic analysis. Samples from six piglets showed good plasma concentrations of ponazuril, which peaked at 5.83 ± 0.94 μg/mL. Mean ± SD area under the plasma concentration–time curve was 1383.42 ± 363.26 h/μg/mL, and the elimination half‐life was 135.28 ± 19.03 h. Plasma concentration of ponazuril peaked at 42 h (range, 36–48 h) after administration and gradually decreased but remained detectable for up to 33 days. No adverse effects were observed during the study period. The results indicate that ponazuril was relatively well absorbed following a single dose, which makes ponazuril likely to be effective in swine.  相似文献   

15.
Seven sea otters received a single subcutaneous dose of cefovecin at 8 mg/kg body weight. Plasma samples were collected at predetermined time points and assayed for total cefovecin concentrations using ultra‐performance liquid chromatography and tandem mass spectrometry. The mean (±SD) noncompartmental pharmacokinetic indices were as follows: CMax (obs) 70.6 ± 14.6 μg/mL, TMax (obs) 2.9 ± 1.5 h, elimination rate constant (kel) 0.017 ± 0.002/h, elimination half‐life (t1/2kel) 41.6 ± 4.7 h, area under the plasma concentration‐vs.‐time curve to last sample (AUClast) 3438.7 ± 437.7 h·μg/mL and AUC extrapolated to infinity (AUC0→∞) 3447.8 ± 439.0 h·μg/mL. The minimum inhibitory concentrations (MIC) for select isolates were determined and used to suggest possible dosing intervals of 10 days, 5 days, and 2.5 days for gram‐positive, gram‐negative, and Vibrio parahaemolyticus bacterial species, respectively. This study found a single subcutaneous dose of cefovecin sodium in sea otters to be clinically safe and a viable option for long‐acting antimicrobial therapy.  相似文献   

16.
The pharmacokinetics and mammary excretion of moxidectin and eprinomectin were determined in water buffaloes (Bubalus bubalis) following topical administration of 0.5mgkg(-1). Following administration of moxidectin, plasma and milk concentrations of moxidectin increased to reach maximal concentrations (C(max)) of 5.46+/-3.50 and 23.76+/-16.63ngml(-1) at T(max) of 1.20+/-0.33 and 1.87+/-0.77 days in plasma and milk, respectively. The mean residence time (MRT) were similar for plasma and milk (5.27+/-0.45 and 5.87+/-0.80 days, respectively). The AUC value was 5-fold higher in milk (109.68+/-65.01ngdayml(-1)) than in plasma (23.66+/-12.26ngdayml(-1)). The ratio of AUC milk/plasma for moxidectin was 5.04+/-2.13. The moxidectin systemic availability (expressed as plasma AUC values) obtained in buffaloes was in the same range than those reported in cattle. The faster absorption and elimination processes of moxidectin were probably due to a lower storage in fat associated with the fact that animals were in lactation. Nevertheless, due to its high excretion in milk and its high detected maximum concentration in milk which is equivalent or higher to the Maximal Residue Level value (MRL) (40ngml(-1)), its use should be prohibited in lactating buffaloes. Concerning eprinomectin, the C(max) were of 2.74+/-0.89 and 3.40+/-1.68ngml(-1) at T(max) of 1.44+/-0.20 and 1.33+/-0.0.41 days in plasma and milk, respectively. The MRT and the AUC were similar for plasma (3.17+/-0.41 days and 11.43+/-4.01ngdayml(-1)) and milk (2.70+/-0.44 days and 8.49+/-3.33ngdayml(-1)). The ratio of AUC milk/plasma for eprinomectin was 0.76+/-0.16. The AUC value is 20 times lower than that reported in dairy cattle. The very low extent of mammary excretion and the milk levels reported lower than the MRL (20ngml(-1)) supports the permitted use of eprinomectin in lactating water buffaloes.  相似文献   

17.
The objective of this study was to assess the pharmacokinetic profile and determine whether any adverse effects would occur in seven healthy adult horses following oral meloxicam tablet administration once daily for 14 days at a dose of 0.6 mg/kg·bwt. Horses were evaluated for health using physical examination, complete blood count, serum chemistry, urinalysis, and gastroscopy at the beginning and end of the study. Blood was collected for the quantification of meloxicam concentrations with liquid chromatography and mass spectrometry. The mean terminal half‐life was 4.99 ± 1.11 h. There was no significant difference between the mean Cmax, 1.58 ± 0.71 ng/mL at Tmax 3.48 ± 3.30 h on day 1, 2.07 ± 0.94 ng/mL at Tmax 1.24 ± 1.24 h on day 7, and 1.81 ± 0.76 ng/mL at 1.93 ± 1.30 h on day 14 (P = 0.30). There was a statistically significant difference between the Tmax on the sample days (P = 0.04). No statistically significant increase in gastric ulcer score or laboratory analytes was noted. Oral meloxicam tablets were absorbed in adult horses, and adverse effects were not statistically significant in this study. Further studies should evaluate the adverse effects and efficacy of meloxicam tablets in a larger population of horses before routine use can be recommended.  相似文献   

18.
The pharmacokinetics and mammary excretion of eprinomectin were determined in cattle following topical administration at a dose rate of 0.5 mg kg(-1). The kinetics of plasma and milk concentrations were analysed using a one-compartment model. The maximum plasma concentration of 43.76 ng ml(-1)occurred 2.02 days post administration, and the mean residence time was 4.16 days. Eprinomection was detected in the milk at the first sampling time and thereafter for at least 15 days. Comparison of the milk and plasma data demonstrated the parallel disposition of the drug in the milk and plasma with a milk / plasma concentration ratio of 0. 102+/-0.048. The amount of drug recovered in the milk during this period was 0.109% +/- 0.038 of the total administered dose. This very low extent of mammary excretion resulted in low concentrations of eprinomectin in milk. This supports the permitted use in lactating cattle, as the maximum level of residue in milk did not exceed the maximum acceptable limit of 30 ng ml(-1).  相似文献   

19.
The penetration of oxytetracycline (OTC) into the oral fluid and plasma of pigs and correlation between oral fluid and plasma were evaluated after a single intramuscular (i.m.) dose of 20 mg/kg body weight of long‐acting formulation. The OTC was detectable both in oral fluid and plasma from 1 hr up to 21 day after drug administration. The maximum concentrations (Cmax) of drug with values of 4021 ± 836 ng/ml in oral fluid and 4447 ± 735 ng/ml in plasma were reached (Tmax) at 2 and 1 hr after drug administration respectively. The area under concentration–time curve (AUC), mean residence time (MRT) and the elimination half‐life (t1/2β) were, respectively, 75613 ng × hr/ml, 62.8 hr and 117 hr in oral fluid and 115314 ng × hr/ml, 31.4 hr and 59.2 hr in plasma. The OTC concentrations were remained higher in plasma for 48 hr. After this time, OTC reached greater level in oral fluid. The strong correlation (= .92) between oral fluid and plasma OTC concentrations was observed. Concentrations of OTC were within the therapeutic levels for most sensitive micro‐organism in pigs (above MIC values) for 48 hr after drug administration, both in the plasma and in oral fluid.  相似文献   

20.
To reduce florfenicol (FFC) administration frequency in veterinary use, the drug was currently developed into in situ forming gel. Twelve pigs were randomly divided into two groups (six pigs per group). A single i.m. dose of 40 mg/kg body weight (b.w.) was given to pigs, group one was given FFC in situ forming gel, and group two was given FFC conventional injection. High‐performance liquid chromatography (HPLC) was used to determine FFC plasma concentrations. There were significant differences (P < 0.01) between FFC in situ forming gel and conventional injection, in pharmacokinetic parameters MRT (mean retention time) (57.79 ± 2.88) h versus (15.94 ± 1.29) h, AUC (area under the concentration–time curve) (421.54 ± 8.97) μg·h/mL versus (168.16 ± 4.59) μg·h/mL, tmax (time of occurrence of cmax) (9.00 ± 2.68) h versus (4.33 ± 0.82) h, cmax (maximum plasma concentration) (6.87 ± 0.66) μg/mL versus (12.01 ± 0.66) μg/mL, t1/2λz (terminal elimination half‐life) (38.04 ± 2.20) h versus (9.15 ± 2.71) h. The results demonstrated that the in situ forming gel system could shorten dosing interval of FFC and thus achieved less frequent administration during long‐term treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号