首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel, recombinant myxoma virus-rabbit haemorrhagic disease virus (RHDV) vaccine has been developed for the prevention of myxomatosis and rabbit haemorrhagic disease (RHD). A number of laboratory studies are described illustrating the safety and efficacy of the vaccine following subcutaneous administration in laboratory rabbits from four weeks of age onwards. In these studies, both vaccinated and unvaccinated control rabbits were challenged using pathogenic strains of RHD and myxoma viruses, and 100 per cent of the vaccinated rabbits were protected against both myxomatosis and RHD.  相似文献   

2.
AIM: To test for antibodies to rabbit haemorrhagic disease (RHD) virus (RHDV) in sera from mammals and birds associated with rabbit populations infected with RHDV. METHODS: Sera from feral and domestic cats, feral ferrets, stoats, hedgehogs, hares, harrier hawks, and black-backed gulls were taken (apart from some of the hares) from areas in New Zealand where RHD was active among rabbit populations. The presence of antibodies to RHD was investigated using a competition enzyme-linked immunosorbent assay (ELISA). RESULTS: Some individual animals of all species were seropositive. Thirty eight of 71 feral cats, but only 1/80 domestic cats were seropositive at a 1:40 dilution. The latter had not been exposed to RHDV. Also reactive in the ELISA were 2/8 stoats; 11/115 ferrets, with significantly more females having antibodies than males; 4/73 hedgehogs; 2/18 hawks, and 1/30 gulls. Three of 66 hares, comprising 3/14 from one population, were seropositive. CONCLUSIONS: Apart from the hares, all these species are known to prey upon rabbits or scavenge their carcasses, a possible means of exposure to RHDV. The possibility that the positive test reactions were due to cross-reactions with other caliciviruses cannot be ruled out, especially for the hares. Nor could the study differentiate whether the positive results were due to an antigenic reaction to ingestion of RHDV, as suggested by overseas work, or to infection of new species by RHDV. These possibilities are being investigated further.  相似文献   

3.
AIM: To estimate over a 3-year period following the first release of rabbit haemorrhagic disease virus (RHDV) the prevalence of rabbit haemorrhagic disease (RHD) and the abundance of rabbits (Oryctolagus cuniculus) in an area that historically had low rabbit densities.

METHODS: Three farms grazing predominantly sheep and beef cattle, located close together and with low initial rabbit densities, were selected for study. RHDV had been deliberately released on all farms in December 1997. Farms were visited 2–3 times per year between June 1998 and April 2001. At each visit, rabbits were shot with the aid of spotlights at night and blood samples were collected for detection of RHDV antibodies. Rabbit carcasses were necropsied and the age of the animals was determined. Rabbit abundance on each property was measured throughout the study using spotlight night counts. Logistic regression was used to identify factors associated with the risk of carcasses being seropositive for RHDV.

RESULTS: Rabbit density differed initially between farms (8.2, 9.9, 2.3 rabbits per spotlight km in June 1998), and declined on all three properties over time (1.2, 2.4, 1.1 rabbits per spotlight km in November 2000). Highest antibody titres to RHDV were initially evident on the farm on which rabbits were most abundant. The average prevalence of seropositive rabbits overall was 21% (95% CI=15–28%). Female rabbits tended to be less likely to be seropositive for RHDV than males (OR=0.47; 95% CI=0.21–1.02). The odds of becoming seropositive were reduced for rabbits born in the breeding season of 1999–2000 (OR=0.17; 95% CI=0.05–0.64).

CONCLUSIONS: The temporal pattern of outbreaks measured by peaks of seroprevalence differed between closely-spaced farms when they had different rabbit densities, but were similar when rabbit densities were similar. Microclimate and vegetation influencing abundance of insect vectors for RHDV and intrinsic population-related factors like rabbit breeding behaviour are also likely to be involved in local patterns of spread.  相似文献   

4.
AIM: To estimate over a 3-year period following the first release of rabbit haemorrhagic disease virus (RHDV) the prevalence of rabbit haemorrhagic disease (RHD) and the abundance of rabbits (Oryctolagus cuniculus) in an area that historically had low rabbit densities. METHODS: Three farms grazing predominantly sheep and beef cattle, located close together and with low initial rabbit densities, were selected for study. RHDV had been deliberately released on all farms in December 1997. Farms were visited 2-3 times per year between June 1998 and April 2001. At each visit, rabbits were shot with the aid of spotlights at night and blood samples were collected for detection of RHDV antibodies. Rabbit carcasses were necropsied and the age of the animals was determined. Rabbit abundance on each property was measured throughout the study using spotlight night counts. Logistic regression was used to identify factors associated with the risk of carcasses being seropositive for RHDV. RESULTS: Rabbit density differed initially between farms (8.2, 9.9, 2.3 rabbits per spotlight km in June 1998), and declined on all three properties over time (1.2, 2.4, 1.1 rabbits per spotlight km in November 2000). Highest antibody titres to RHDV were initially evident on the farm on which rabbits were most abundant. The average prevalence of seropositive rabbits overall was 21% (95% CI=15-28%). Female rabbits tended to be less likely to be seropositive for RHDV than males (OR=0.47; 95% CI=0.21-1.02). The odds of becoming seropositive were reduced for rabbits born in the breeding season of 1999-2000 (OR=0.17; 95% CI=0.05-0.64). CONCLUSIONS: The temporal pattern of outbreaks measured by peaks of seroprevalence differed between closely-spaced farms when they had different rabbit densities, but were similar when rabbit densities were similar. Microclimate and vegetation influencing abundance of insect vectors for RHDV and intrinsic population-related factors like rabbit breeding behaviour are also likely to be involved in local patterns of spread.  相似文献   

5.
为了解楚雄州部分地区的猪瘟免疫情况,利用酶联免疫法(ELISA)对楚雄市、南华县和禄丰县随机采取的393份血清进行猪瘟抗体检测,并对各县(市)的调查数据加以比较,了解猪瘟在楚雄州部分地区的免疫情况。结果显示,楚雄州部分地区均有较高的猪瘟抗体阳性率,各县(市)的猪瘟抗体阳性率都在80%以上,有的县(市)猪瘟抗体甚至达到了100%。说明楚雄州部分地区的猪瘟免疫效果较好,猪瘟免疫成功。  相似文献   

6.
7.
AIM: To monitor the initial releases of rabbit haemorrhagic disease virus (RHDV) into previously unexposed rabbit populations in the North Island of New Zealand. METHODS: The study programme consisted of pre-release spotlight counts of rabbits on the study farms, pre-release serological samples to check for prior exposure to RHDV, a farmer-completed questionnaire and post-release spotlight counts to measure any change in rabbit numbers following the release of RHDV. In total, 23 sites within the lower North Island where RHDV was released during the period November 1997 to June 1998, were monitored. The most common release method involved the spreading of chopped carrot bait laced with a solution of virus-infected material obtained from dead rabbits. RESULTS: Eighty percent of farmers thought that the disease had spread away from the release sites to areas where virus had not been liberated, although only 27% reported finding dead rabbits more than 300 m away from release locations. Seventy-three percent of farmers were satisfied with the overall effectiveness of rabbit haemorrhagic disease (RHD) as a means of reducing rabbit numbers, but 56% indicated they would modify the way they released the virus in the future. Average pre-release night spotlight counts per property ranged from 2.2 rabbits/km to 36.9 rabbits/km, the median being 12.8 rabbits/km. The time interval from initial release to when the first dead rabbit was seen which the farmer believed to have died from RHD varied from 3 to 21 days, the mean being 7.4 days and the median 7 days. The median change in night spotlight counts per site at 3 weeks after release, expressed as a percentage relative to pre-release counts, was -15.5% (range +18.9% to -76.9%) and at 6 weeks was -49.7% (range 0% to -76.9%). The time of the estimated peak of the disease epidemic ranged from 1 to 7 weeks after release of RHDV, the mean being 3.1 and the median 3 weeks. CONCLUSION: Rabbit haemorrhagic disease reduced rabbit numbers on the majority of farms where the virus was released, and appears to be an effective measure for controlling rabbit populations in New Zealand.  相似文献   

8.
Aim: To monitor the initial releases of rabbit haemorrhagic disease virus (RHDV) into previously unexposed rabbit populations in the North Island of New Zealand.

Methods: The study programme consisted of pre-release spotlight counts of rabbits on the study farms, pre-release serological samples to check for prior exposure to RHDV, a farmer-completed questionnaire and post-release spotlight counts to measure any change in rabbit numbers following the release of RHDV. In total, 23 sites within the lower North Island where RHDV was released during the period November 1997 to June 1998, were monitored. The most common release method involved the spreading of chopped carrot bait laced with a solution of virus-infected material obtained from dead rabbits.

Results: Eighty percent of farmers thought that the disease had spread away from the release sites to areas where virus had not been liberated, although only 27% reported finding dead rabbits more than 300 m away from release locations. Seventy-three percent of farmers were satisfied with the overall effectiveness of rabbit haemorrhagic disease (RHD) as a means of reducing rabbit numbers, but 56% indicated they would modify the way they released the virus in the future. Average pre-release night spotlight counts per property ranged from 2.2 rabbits/km to 36.9 rabbits/km, the median being 12.8 rabbits/km. The time interval from initial release to when the first dead rabbit was seen which the farmer believed to have died from RHD varied from 3 to 21 days, the mean being 7.4 days and the median 7 days. The median change in night spotlight counts per site at 3 weeks after release, expressed as a percentage relative to pre-release counts, was -15.5% (range + 18.9% to -76.9%) and at 6 weeks was -49.7% (range 0% to -76.9%). The time of the estimated peak of the disease epidemic ranged from 1 to 7 weeks after release of RHDV, the mean being 3.1 and the median 3 weeks.

Conclusion: Rabbit haemorrhagic disease reduced rabbit numbers on the majority of farms where the virus was released, and appears to be an effective measure for controlling rabbit populations in New Zealand.  相似文献   

9.
OBJECTIVE: To determine what factors governed the extent of outbreaks of rabbit haemorrhagic disease (RHD) following releases in New South Wales. DESIGN: Retrospective cross-sectional study. PROCEDURE: Information from the data set of official releases was subjected to two preliminary analyses. More comprehensive information on a subsample of official RHD releases, sites and animals was gathered by telephone survey of Rural Lands Protection Board staff and farmers. Data were analysed using multivariate techniques to determine which factors were associated with rabbit mortality within one month of RHDV release, within several months of release and in affecting the proportion of the population killed. RESULTS: A strong association was found between the presence of heavy flea infestation (odds ratio 2.7), breeding in rabbits and outbreaks of RHD. For each week following breeding there was an 8% decline in the odds of an outbreak. Low temperatures also promoted outbreaks. Less important effects included the prior presence of RHD at the release site, which reduced the likelihood and severity of outbreaks. The presence of cattle and proximity to the nearest water body were associated with increased severity and likelihood of outbreaks respectively. CONCLUSION: Both breeding of rabbits and associated high flea numbers may act together or independently in promoting outbreaks of RHD. Stresses involved with rabbit reproduction and low environmental temperatures also appear to influence the likelihood of outbreaks. The effects of proximity to cattle and water suggests that both flies and mosquitoes may have a minor role in local transmission.  相似文献   

10.
Previous studies have shown that feral cats (Felis catus) from rabbit haemorrhagic disease (RHD) epidemic areas in New Zealand had antibodies against RHD Virus (RHDV) and RHDV RNA was identified by nested RT-PCR from one seropositive feral cat liver. To assess whether RHDV replicates and produces clinical consequences in cats following the consumption of RHDV-infected rabbit, a challenge trial was conducted by feeding cats RHDV-infected rabbit livers. Antibodies against RHDV were detected by immunoassay from sera of cats collected 10 days after the consumption of RHDV-infected livers. Animals fed four times with RHDV-infected livers, had higher antibody titres than animals fed only once. RHDV RNA was detected by nested RT-PCR from mesenteric lymph nodes, tonsil, spleen and liver of cats fed with RHDV-infected livers. RHDV anti-genomic RNA was also detected by nested RT-PCR from mesenteric lymph nodes collected from one animal 2 days after the fourth feed. RHDV was detected by antigen ELISA from cat faeces 1-2 days after the consumption of RHDV-infected livers. Even though a large amount of RHDV has been used, cats did not show any signs of disease. Although abortive RHDV replication could not be ruled out, active RHDV replication was not demonstrated.  相似文献   

11.
Causative agent of rabbit haemorrhagic disease (RHD) was purified by CsCl density gradient centrifugation from the liver homogenate of rabbits infected with RHD virus which originated from Korea. The viral particles were 35-40 nm in diameter, and had hollow depressions on their surface. Protein A-gold immunoelectron microscopy clearly showed that the convalescent antisera of diseased rabbits reacted specifically with the virus particles. SDS-PAGE and Western blot analyses demonstrated that the structural protein of the virus was composed of a single major polypeptide of 63 kD. These findings indicate that the causative agent of RHD, tentatively named as picornavirus in Korea, belongs to calicivirus.  相似文献   

12.
13.
14.
OBJECTIVE: To determine seroprevalence of FeLV and FIV infection among cats in North America and risk factors for seropositivity. DESIGN: Prospective cross-sectional survey. ANIMALS: 18,038 cats tested at 345 veterinary clinics (n=9,970) and 145 animal shelters (8,068) between August and November 2004. PROCEDURE: Cats were tested with a point-of-care ELISA for FeLV antigen and FIV antibody. A multivariable random effects logistic regression model was used to identify risk factors significantly associated with seropositivity while accounting for clinic-to-clinic (or shelter) variability. RESULTS: 409 (2.3%) cats were seropositive for FeLV antigen, and 446 (2.5%) cats were seropositive for FIV antibody; 58 (0.3%) cats were seropositive for infection with both viruses. Multivariable analysis indicated that age, sex, health status, and cat lifestyle and source were significantly associated with risk of seropositivity, with adults more likely to be seropositive than juveniles (adjusted odds ratios [ORs], 2.5 and 2.05 for FeLV and FIV seropositivity, respectively), sexually intact adult males more likely to be seropositive than sexually intact adult females (adjusted ORs, 2.4 and 4.66), and outdoor cats that were sick at the time of testing more likely to be seropositive than healthy indoor cats (adjusted ORs, 8.89 and 11.3). CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that certain characteristics, such as age, sex, health status, and lifestyle, are associated with risk of FeLV and FIV seropositivity among cats in North America. However, cats in all categories were found to be at risk for infection, and current guidelines to test all cats at the time of acquisition and again during illness should be followed.  相似文献   

15.
A cross-sectional study was conducted in Costa Rican cattle to identify host risk factors and endemic foci for vesicular stomatitis virus New Jersey (VSV NJ) and indiana (VSV IND) serotype The effects of age, gender, breed, residence at specific levels of mean annual rainfall, temperature, relative evapotranspiration potential, and elevation on the risk of seropositivity for VSV NJ and VSV IND were evaluated using a random-effects logistic-regression model which adjusted for overdispersion between herds. A total of 2232 cattle from 348 farms located throughout Costa Rica were examined.

Total seroprevalences of 46% and 21% were found for VSV NJ and VSV IND, respectively. When environmental risk factors were considered, cattle residing in areas between 500 and 1500 m (pre-montane or lower montane moist forest) had a higher risk of seropositivity to VSV BNJ compared with cattle living at lower elevations (odds ratio (OR) ≥ 3.6). In addition, cattle residing at 0–500 m and less than 2 m of annual raifall (tropical dry forest) were also at a higher risk of seropositivity to VSV NJ compared with cattle living at other regions (OR ≥ 10). This evidence suggests that at least two transmission cycles may exist for VSV NJ: one located at a higher elevation and the other found at regions of lower elevation and lower rainfall. These regions may indicate the location of different arthropod vectors of viral reservoirs. Antibody prevalence increased with age, suggesting a relationship between lenght of residence in an endemic area and the likelihood of being seropositive to VSV NJ.

No factors were associated with VSV IND seropositivity. The lack of environmental associations with VSV IND seropositivity suggested that the transmission cycle for this serotype is different than that for SV NJ.  相似文献   


16.
Herding semi-domesticated reindeer has economic and social value for Sami people in the northern territories of Fennoscandia. However, with the intensification of reindeer husbandry, interspecies transmission of pathogens between reindeer and domestic animals may become a problem, especially for countries such as Sweden, Norway, and Finland where pestivirus and alphaherpesvirus have been eradicated in domestic ruminants. This study, which included 1158 Swedish reindeer, showed relatively high prevalence of antibodies against bovine viral diarrhoea virus (BVDV) (32%) and bovine herpesvirus-1 (BoHV-1) (53%). Adult animals were more often seropositive for BVDV and BoHV-1 (50% and 78%, respectively) than were calves (18 and 11%, respectively). While the seroprevalence of alphaherpesvirus was similar in different herding districts, pestivirus seropositivity was highest in the South and diminished towards the North of the Swedish reindeer herding area. High correlation of the seropositivity against both pathogens at both individual and herd levels may indicate possible mutual synergetic effects and may be explained by the immunosuppressive nature of the viruses. While alphaherpesvirus seroprevalence was probably related to putative cervid herpesvirus 2 (CvHV-2), the pestivirus infecting reindeer remains undefined. The virus neutralisation test of reindeer sera using different pestivirus strains, revealed higher titres against Border disease virus strains like 137/4 (BDV-1) and Reindeer-1 (BDV-2) than against BVDV-1. However, the virus was not identified by real time RT-PCR in any of the samples (n=276) from seronegative reindeers. The study showed that pestivirus and alphaherpesvirus infections are endemic in the Swedish reindeer population.  相似文献   

17.
18.
在注射兔病毒性出血症 (RHD)疫苗后 ,30只兔随机分为 2组 ,试验组兔饲喂含 1 5 %黄白散的饲料。从接种到第 1 80天 ,每组取兔 8只 ,每隔 1 5d采血 1次 ,检测血凝抑制 (HI)抗体 ;在接种前 1天及接种后 5、 1 0、 1 7、 2 4、 31、 41、 5 1d ,每组取兔 1 0只 ,采血检测ANAE+淋巴细胞百分率 ;在 1 80、 2 4 0、 30 0d时 ,每组分别取兔 5只做攻毒保护试验。结果表明 :2组兔HI抗体峰值分别为 7 3log2和 9 8log2 ,差异极显著 (P <0 0 1 ) ;试验组疫苗保护期可延长 60d ;试验组ANAE+率从第 1 0天至 5 1天与对照组比较 ,差异极显著(P<0 0 1 )。所以黄白散可增强兔接种RHD疫苗后的特异性免疫功能 ,增强RHD疫苗的免疫效果。  相似文献   

19.
Host–pathogen epidemiological processes are often unclear due both to their complexity and over-simplistic approaches used to quantify them. We applied a multi-event capture–recapture procedure on two years of data from three rabbit populations to test hypotheses about the effects on survival of, and the dynamics of host immunity to, both myxoma virus and Rabbit Hemorrhagic Disease Virus (MV and RHDV). Although the populations shared the same climatic and management conditions, MV and RHDV dynamics varied greatly among them; MV and RHDV seroprevalences were positively related to density in one population, but RHDV seroprevalence was negatively related to density in another. In addition, (i) juvenile survival was most often negatively related to seropositivity, (ii) RHDV seropositives never had considerably higher survival, and (iii) seroconversion to seropositivity was more likely than the reverse. We suggest seropositivity affects survival depending on trade-offs among antibody protection, immunosuppression and virus lethality. Negative effects of seropositivity might be greater on juveniles due to their immature immune system. Also, while RHDV directly affects survival through the hemorrhagic syndrome, MV lack of direct lethal effects means that interactions influencing survival are likely to be more complex. Multi-event modeling allowed us to quantify patterns of host–pathogen dynamics otherwise difficult to discern. Such an approach offers a promising tool to shed light on causative mechanisms.  相似文献   

20.
散发性兔病毒性出血症的观察   总被引:1,自引:0,他引:1  
通过对云南发病较多的12个兔场进行流行病学调查、临床症状及剖检变化观察、细菌培养、HA和HI试验,结果发现:兔病毒性出血症(RHD)可以在免疫过的兔场呈散发性流行;RHD散发性流行时,还会有其他疾病的存在:观察到散发性RHD的主要特点是最急性病例少见,病变出现率低,病变轻微,病程比文献报道的长。结果显示.散发性RHD发生的主要原因是兔群中存在免疫空白和免疫力低下的个体。建议开展RHD免疫程序与抗体水平,仔兔、幼兔母源抗体的消长规律,不同母源抗体水平的免疫效果观察等研究,建立更科学的免疫程序.并根据母源抗体监测结果确定首免日龄。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号