首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The influence of an attenuated classical swine fever virus C strain vaccine and a subunit E2 vaccine against classical swine fever on the peripheral blood leucocyte proportion and phenotypic expression in 12-week-old pigs was studied. The C strain was amplified in minipig kidney cell culture and final product contained 10(4 +/- 0.15) TCID50/ml, while the subunit vaccine contained 32 microg per dose of gp E2. Haematological findings showed that the vaccines did not cause leucopenia or lymphocytopenia and the number of neutrophils and eosinophils during the observation period was within physiological range. The results of the proportion of CD4a+, CD5a+, CD8a+, wCD21+, CD45RA+, CD45RC+ , non-T non-B, SWC3a+ and CD11b+ cells were gained by single-colour flow cytometry. At the end of the trial a significantly increase of percentage of CD4+, CD5a+, CD8+, wCD21+ cells has been found in pigs that received the subunit vaccine and the percentage of CD4+, CD5a+, CD8+, CD45RA+ and CD45RC+ cells was higher in pigs that received the attenuated vaccine. Twenty-eight days after vaccination the percentage of CD4+, CD45RA+ and CD45RC+ was significantly higher in pigs vaccinated with the C strain than in pigs vaccinated with the subunit vaccine. In contrary, the percentage of the wCD21- cells was higher in pigs that received the subunit vaccine. Statistically higher values of SWC3a+ and lower values of CD11b+ cells was observed in pigs that received the attenuated vaccine than in pigs vaccinated with the subunit vaccine. Taken altogether, our results showed that the subunit vaccine produced a better stimulation of B cells and CD11b+ monocytes/macrophages /granulocytes/NK cells, whereas the attenuated vaccine induced a higher response of Th cells, naive/memory cells and macrophages/neutrophils. Thus, both vaccines were able to influence the porcine immune system, by activating different subsets of the immune effector/accessory cells.  相似文献   

2.
Total white blood cell (WBC) counts and percentages of CD4a+, CD8a+, CD5a+, CD45RA+, CD45RC+, wCD21+ and SWC3a+ cells in the peripheral blood of pigs were analysed in this study. Blood samples were collected before and on days 4, 10, 21 and 28 after vaccination. Group 1 pigs were vaccinated with a subunit E2 vaccine (gp E2 32 microg/dose), and Group 2 received a subunit vaccine combined with an attenuated ORF virus strain D1701 10(6.45) TCID50/dose. Control pigs received a placebo. The total WBC count and percentage of particular cell types were within the normal range in vaccinated and control pigs. Although the mechanism of attenuated ORF virus activity is not clear, changes were observed in CD4a+, CD5a+, CD8a+, CD45RA+ and CD45RC+ cells in pigs that received the combination of a subunit vaccine and ORF virus. However, the percentage of wCD21+ and SWC3a+ did not differ significantly from that recorded in pigs given only the subunit vaccine. At days 4 and 10 the number of pigs positive to E2 antibodies was higher in the group that received the subunit vaccine and ORF virus than in pigs vaccinated with the subunit vaccine only. A higher percentage of memory cells (CD45RC+) as well as Th and Tc lymphocytes in pigs that received the ORF virus and the subunit vaccine could be ascribed to a nonspecific influence of the ORF virus on the development (through cognate interactions between T and B cells) and the duration (presumed according to the finding of the clonal expression of memory cells) of humoral immunity (assessed by a higher number of seropositive pigs in this group). This seems likely since the proportion of these cells was found to be lower in the pigs that received E2 vaccine only.  相似文献   

3.
The period during which pigs are protected after vaccination is important for the successful usage of a marker vaccine against classical swine fever virus (CSFV) in an eradication programme. In four animal experiments with different vaccination-challenge intervals we determined the duration of protection of an E2 subunit marker vaccine in pigs after a single vaccination. Unvaccinated pigs were included in each group to detect transmission of the challenge virus.Three groups of six pigs were vaccinated once and subsequently inoculated with the virulent CSFV strain Brescia after a vaccination-challenge interval of 3, 51/2, 6 or 13 months. All vaccinated pigs, 16 out of 18, with neutralising antibodies against CSFV at the moment of challenge, 3, 51/2, 6 or 13 months later, survived, whereas unvaccinated control pigs died from acute CSF or were killed being moribund. A proportion of the vaccinated pigs did however develop fever or cytopenia after challenge and two vaccinated pigs were viremic after challenge. Virus transmission of vaccinated and challenged pigs to unvaccinated sentinel pigs did not occur in groups of pigs which were challenged 3 or 6 months after a single vaccination. Two out of eight vaccinated pigs that were found negative for CSFV neutralising antibody at 13 months after vaccination died after subsequent challenge.The findings in this study demonstrate that pigs can be protected against a lethal challenge of CSFV for up to 13 months after a single vaccination with an E2 subunit marker vaccine.  相似文献   

4.
Vaccinology of classical swine fever: from lab to field   总被引:12,自引:0,他引:12  
There are two types of classical swine fever vaccines available: the classical live and the recently developed E2 subunit vaccines. The live Chinese strain vaccine is the most widely used. After a single vaccination, it confers solid immunity within a few days that appears to persist lifelong. The E2 subunit vaccine induces immunity from approximately 10-14 days after a single vaccination. The immunity may persist for more than a year, but is then not complete. The Chinese strain vaccine may establish a strong herd immunity 1-2 weeks earlier than the E2 vaccine. The ability of the Chinese vaccine strain to prevent congenital infection has not been reported, but the E2 subunit vaccine does not induce complete protection against congenital infection. Immunological mechanisms that underlie the protective immunity are still to be elucidated. Both types of vaccine are considered to be safe. A great advantage of the E2 subunit vaccine is that it allows differentiation of infected pigs from vaccinated pigs and is referred to as a DIVA vaccine. However, the companion diagnostic E(rns) ELISA to actually make that differentiation should be improved. Many approaches to develop novel vaccines have been described, but none of these is likely to result in a new DIVA vaccine reaching the market in the next 5-10 years. Countries where classical swine fever is endemic can best control the infection by systematic vaccination campaigns, accompanied by the normal diagnostic procedures and control measures. Oral vaccination of wild boar may contribute to lowering the incidence of classical swine fever, and consequently diminishing the threat of virus introduction into domestic pigs. Free countries should not vaccinate and should be highly alert to rapidly diagnose any new outbreak. Once a new introduction of classical swine fever virus in dense pig areas has been confirmed, an emergency vaccination programme should be immediately instituted, for maximum benefit. The question is whether the time is ripe to seriously consider global eradication of classical swine fever virus.  相似文献   

5.
Two commercial marker vaccines against classical swine fever virus (CSFV) and companion diagnostic tests were examined in 160 conventional pigs. To test the vaccines in a "worst case scenario", group of 10 weaners were vaccinated using a single dose of an E2 (gp55) based vaccine at days -21, -14, -10 or -7, and subsequently challenged at day 0. The challenge virus was CSFV 277, originating from a recent outbreak of classical swine fever (CSF) in Germany. In all groups, only 5 out of 10 pigs were challenged; the remaining 5 pigs served as vaccinated contact controls. Also, three control groups, each consisting of 10 non-vaccinated pigs, were challenged in parallel to the vaccinated animals. CSFV could be isolated from all non-vaccinated pigs. Among these pigs 40% displayed a chronic course of the infection (virus positive for more than 10 days). Pigs vaccinated 21 or 14 days before challenge displayed no clinical signs of CSFV after challenge. However, they were still able to replicate CSFV when challenged, as measured by reisolation of CSFV from leukocytes of the directly challenged pigs. CSFV could be isolated from the leucocytes of 25% of the pigs vaccinated 21 days before challenge and 50% of the pigs vaccinated 14 days before challenge. Chronic infection was not observed, but transmission to one vaccinated contact pig occurred. From all pigs vaccinated 10 or 7 days before challenge, CSFV could be reisolated. We observed a chronic course of infection in 5% of pigs vaccinated 10 days before challenge and in 30% of pigs vaccinated 7 days before challenge. The mortality rate was 20% in the pigs vaccinated 10 days before challenge, and varied between 20 and 80% in pigs vaccinated 7 days prior to challenge. The contact animals had lower mortality (0-20%) than directly challenged pigs, probably mirroring the delayed time point of infection. There was thus some protection against clinical illness by both marker vaccines, but not a solid protection against infection and virus shedding. The efficacy of the vaccine was best if used 3 weeks before challenge and a clear correlation between time interval from vaccination to challenge and the level of virus shedding was observed. Each vaccine had its own accompanying discriminatory ELISA, but 18% of the virus positive pigs never seroconverted in these tests.  相似文献   

6.
The objectives were to determine if PCV2 vaccination is effective in reducing disease and lesions associated with PRRSV and PCV2 coinfection and if there is a difference between intradermal (ID) and intramuscular (IM) route of PCV2 vaccination. Seventy-four, 21-day-old pigs were randomly allocated into one of six groups. On day 0, pigs were vaccinated with 2ml Suvaxyn((R)) PCV2 One Dose (Fort Dodge Animal Health, Inc.) by intramuscular (VAC-M-COINF) or intradermal (VAC-D-COINF) routes. On day 28, pigs were either singularly (PRRSV-only, PCV2-only) or coinfected (COINF) with PRRSV and PCV2. All pigs in all groups were necropsied on day 42. All vaccinated pigs seroconverted (IgM, IgG, and neutralizing antibodies) to PCV2 between 14 and 28 days post-vaccination. After challenge, all groups inoculated with PRRSV had reduced average daily gain compared to CONTROLS and PCV2-only (P<0.001). COINF pigs had significantly (P<0.05) reduced anti-PCV2-IgG antibody levels and neutralizing antibody levels compared to both vaccinated groups. COINF pigs had more severe lung lesions compared to VAC-M-COINF (P<0.05). COINF pigs had higher amounts of PCV2 DNA in serum samples and feces (P<0.05) and increased amounts of PCV2 in lymphoid tissues (P<0.05) compared to both vaccinated groups. In summary, PCV2 vaccination was effective at inducing a neutralizing antibody response and significantly reducing PCV2-associated lesions and PCV2 viremia in pigs coinfected with PCV2 and PRRSV. Differences between intradermal and intramuscular routes of vaccine administration were not observed.  相似文献   

7.
Evaluation in swine of a subunit vaccine against pseudorabies   总被引:2,自引:0,他引:2  
A subunit vaccine against pseudorabies virus (PRV) was prepared by treating a mixture of pelleted virions and infected cells with the nonionic detergent Nonidet P-40 and emulsifying the extracted proteins incomplete Freund's adjuvant. Three 7-week-old pigs without antibodies against PRV were given 2 IM doses of this vaccine 3 weeks apart. Thirty days after the 2nd vaccination, 10(6) median tissue culture infective doses (TCID50) of a virulent strain of PRV were administered intranasally. Tonsillar and nasal swabs were collected daily between 2 and 10 days after challenge exposure. The pigs vaccinated with the subunit vaccine were not found to shed virulent PRV. Two groups of five 7-week-old pigs vaccinated with commercially available vaccines, either live-modified or inactivated virus, and subsequently exposed to 10(6) TCID50 of virulent PRV, shed virulent virus for up to 8 days. The subunit vaccine induced significantly higher virus-neutralizing antibody titers than either the live-modified or inactivated virus vaccine.  相似文献   

8.
The efficacy of a subunit vaccine containing the Apx toxins of Actinobacillus pleuropneumoniae and transferrin-binding proteins was determined. Ten pigs were vaccinated twice with the vaccine. Eight control animals were injected twice with a saline solution. Three weeks after the second vaccination, all pigs were endobronchially inoculated with 10(6.5) colony-forming units (CFU) of an A. pleuropneumoniae serotype 9 strain. In the vaccine group, none of the pigs died after inoculation. Only one pig of the control group survived challenge. Surviving pigs were killed at 7 days after challenge. The mean percentage of affected lung tissue was 64% in the control group and 17% in the vaccine group. Actinobacillus pleuropneumoniae was isolated from the lungs of all animals. The mean bacterial titres of the caudal lung lobes were 5.0 x 10(8) CFU/g in the control group and 3.0 x 10(6) CFU/g in the vaccine group. It was concluded that the vaccine induced partial protection against severe challenge.  相似文献   

9.
Cross-protection between Haemophilus parasuis serovars 2 and 5 was examined in pigs using a bacterin based vaccine, and subsequently the safety and efficacy of a bivalent vaccine were evaluated. Upon intratracheal challenge of a serovar 2 or 5 strain, pigs immunized with a monovalent vaccine were protected against challenge with a homologous serovar strain, but not with a heterologous serovar strain. Immunization with a bivalent vaccine containing both serovars 2 and 5 bacterins conferred protection in pigs against lethal challenge with each of the serovar strains. A total of 86 pigs from two SPF herds were injected with the bivalent vaccine intramuscularly twice at a four-week interval. No adverse reactions following the vaccination were observed. On day 7 after the second vaccination, vaccinated and non-vaccinated control pigs from herd A were transferred to herd B, where Glasser's disease had broken out. Pigs in the control group developed clinical signs of the disease, and 6 of 8 (75%) pigs died until slaughter, in contrast with only 4 of 46 (9%) pigs in the vaccinated group. In herd C, where there was no outbreak of Glasser's disease, complement fixation antibody titer was raised only in the vaccinated group. A challenge experiment on days 20 and 79 after the second vaccination showed that only the vaccinated pigs were protected. From these findings, the safety and efficacy of the bivalent vaccine were confirmed under laboratory and field conditions.  相似文献   

10.

Background

Post-weaning multisystemic wasting syndrome (PMWS) associated with PCV2 is one of the most costly diseases currently faced by the swine industry. The development of effective vaccines against PCV2 infection has been accepted as an important strategy in the prophylaxis of PMWS.

Methods

In the present study, a PK-15 cell-adapted formalin-inactivated prototype vaccine candidate was prepared using a strain of PCV2 from China. Inactivation of the virus was accomplished using a standard formalin inactivation protocol. The protective properties of the inactivated PCV2 vaccine were evaluated in piglets. Ten 28-day-old pigs were randomly assigned to two groups, each with five. Group 1 was vaccinated intramuscularly with the inactivated virus preparation; Group 2 received sterile PBS as a placebo. By 28 days post-vaccination (DPV), Groups 1 and 2 were challenged intranasally and intramuscularly with 5 × 107 TCID50 of a virulent PCV2 isolate.

Results

The vaccinated pigs seroconverted to PCV2 and had high levels of serum antibodies to PCV2 at 28 days after vaccination, whereas the control pigs remained seronegative. No significant signs of clinical disease were recorded following the challenge with PCV2, but moderate amounts of PCV2 antigen were detected in most lymphoid organs of the control pigs. PCV2 was detected in two out of the five vaccinated pigs. Furthermore, pathological lesions and viremia were milder in the vaccinated group.

Conclusions

The obtained results indicate that the inactivated PCV2 virus vaccine with an oil adjuvant induce an immunological response in pigs that appears to provide protection from infection with PCV2. The vaccine, therefore, may have the potential to serve as a vaccine aimed to protect pigs from developing PMWS.  相似文献   

11.
In order to compare the effect of the route of immunization on the efficacy of a modified live Aujeszky's disease (AD) vaccine, which had deletions in both thymidine kinase (TK-) and glycoprotein gIII genes (gpIII-), 20 six-week-old pigs were vaccinated by either the intramuscular (IM) (n = 10) or subcutaneous (SC) (n = 10) route. All the animals, including five non-vaccinated control animals, were challenged with virulent AD virus 22 days after vaccination. Four of five non-vaccinated animals died within 12 days after challenge. Although none of vaccinated animals died, three of animals in the SC group exhibited clinical signs, and average daily gains in the SC group were depressed. The animals in the IM group were not found to shed challenge virus, but those in the SC group shed the virus up to 9 days. Virus neutralizing antibody titers in the vaccinated animals were low or non-detectable by 21 days after vaccination. A glycoprotein gII (gpII) screening ELISA detected gpII antibody in all animals in the IM group. While, only 30% of animals in the SC group were positive by the same test. The results of this study indicate that TK-, gpIII modified live AD virus vaccine is effective against challenge with virulent AD virus; however, vaccination by the SC route reduced vaccine efficacy in comparison with IM route.  相似文献   

12.
Aujeszky's disease virus (ADV) envelope glycoprotein gVI (gp50) was purified from virus-infected Vero cells by ion-exchange and immunoaffinity chromatography and its usefulness as a subunit vaccine was evaluated in active and passive immunization studies. Four-week-old piglets were immunized intramuscularly (IM) with purified gVI twice two weeks apart and challenged intranasally (IN) 10 days after the second immunization with 30 LD50 (10(8)PFU) of a virulent strain of ADV. Pigs, vaccinated with 100 micrograms of purified gVI, produced virus neutralizing antibodies and did not develop clinical signs after challenge exposure. The challenge virus was not isolated from nasal swabs and tonsils of gVI-vaccinated pigs, whereas non-vaccinated control pigs developed illness after challenge exposure with the same virulent ADV strain which was later recovered from their nasal swabs and tonsils. Pregnant sows vaccinated twice with purified gVI (IM) at a three week interval produced virus neutralizing antibodies in colostrum. Four-day-old sucking piglets born of vaccinated sows were passively protected by colostral antibodies against intranasal challenge with a lethal dose of virulent ADV. Sera from gVI-vaccinated pigs were distinguished from experimentally infected swine sera by their differential reactivity in enzyme-linked immunosorbent assay (ELISA) using four major viral glycoproteins (excluding gVI) as antigen purified by the use of lentil-lectin.  相似文献   

13.
猪支原体肺炎是由猪肺炎支原体(Mycoplasma hyopneumoniae ,Mhp)引起的猪的一种慢性呼吸道疾病,严重影响养猪业发展,活疫苗气溶胶免疫是防治该病的新措施。为研究猪肺炎支原体活疫苗(168株)经气溶胶免疫后,疫苗株在免疫猪肺内的占位存留规律,选用3周龄不吃初乳猪27头,随机分为3组,G1气溶胶免疫组12头,G2肺内免疫组12头,同时设立阴性对照3头。分别于免疫后第2 h、7 d、14 d及28 d进行鼻拭子Mhp sIgA检测以及血清抗体检测。另外在上述时间点分别宰杀G1和G2组各3头,对照组在实验组免疫后第28 d宰杀,采集肺泡灌洗液,分别进行Mhp sIgA检测及Mhp疫苗株含量检测。结果显示:(1)所有试验猪至实验结束,Mhp血清抗体未出现转阳现象;(2)鼻拭子sIgA水平G1组在免疫后第14 d与对照组相比上升,差异具有显著统计学意义(p <0.05);G2组在免疫后第7 d和14 d与相应的对照组相比上升,差异具有显著统计学意义(p <0.05),各时间点G1组与G2组sIgA水平差异不具备统计学意义(p >0.05);(3)G1组肺泡灌洗液中的 sIgA在免疫后14 d部分转阳(阳性率33.33%),28 d全部转阳(阳性率100%);G2组在免疫14 d时已全部转阳(阳性率100%),各时间点G1组与G2组sIgA水平差异不具备统计学意义(p >0.05);(4)气溶胶免疫组肺泡灌洗液内Mhp疫苗株浓度在免疫后第2 h、7 d、14 d和28 d分别是相应肺内免疫组的0.37倍、1.01倍、0.88倍以及0.52倍。猪支原体肺炎活疫苗(168株)经气溶胶免疫后,和肺内免疫一样可以诱导免疫猪的局部黏膜免疫以及具有同等的占位效应,且经气溶胶免疫的疫苗株在免疫仔猪体内的增殖水平可能与其诱导的黏膜免疫水平相关。  相似文献   

14.
This study investigated the effect of swine interleukin 2 (IL-2) and swine interleukin 4 (IL-4) on the development of immune responses induced by a PRRSV-ORF7 DNA vaccine (phCMV-ORF7). The two cytokines were cloned separately in the eukaryotic expression vector phCMV, and delivered via gene gun as adjuvants for the DNA vaccine. Groups of 3-week-old certified PRRSV-free, castrated male, Yorkshire crossbred pigs, were vaccinated with or without the IL-2 or IL-4. The ensuing humoral and cellular immune responses were analyzed by a PRRSV-specific ELISA, and by an in vitro blastogenic response of peripheral blood mononuclear cells (PBMC) stimulated by viral antigen, respectively. The animals were boosted 21 days post-vaccination and challenged 28 days afterward. The virus loads post-challenge were measured by real time PCR. The group of swine receiving the vaccine plus IL-2 had significant virus-specific blastogenic responses 3 weeks after the vaccine-cytokine boost, when compared to those of the experimental pigs that received the vaccine plus IL-4, vaccine alone, unvaccinated controls or the pigs vaccinated with the DNA vaccine cloned in the reverse orientation (phCMV-ORF7(Rev)). None of the experimental swine had detectable specific antibodies against the virus during the vaccination phase. The virus load peak in vaccinated animals was delayed by about 72h as compared to that of the control pigs (unvaccinated and vaccinated with the phCMV-ORF7(Rev) construct). Interestingly, animals that received the phCMV-ORF7 vaccine alone consistently had low virus loads throughout the study. These results demonstrate that IL-2 has a positive inductive effect on the activation of vaccine-induced virus-specific cellular immunity, while IL-4 appeared to have a suppressive effect. Our data also suggest that ORF7 may play a role in reducing the virus load in PRRSV infected animals.  相似文献   

15.
OBJECTIVE: To compare immunologic responses and reproductive outcomes in sows housed under field conditions following controlled exposure to a wild-type strain of porcine reproductive and respiratory syndrome virus (PRRSV strain WTV) or vaccination with a modified-live virus (MLV) vaccine. DESIGN: Randomized controlled trial. ANIMALS: 30 PRRSV-na?ve 10-week-old female pigs. PROCEDURE: Humoral and cell-mediated immune responses were monitored while pigs were held in isolation for 84 days after inoculation with the WTV strain (n = 10), inoculation with the WTV strain and 42 days later vaccination with a killed-virus vaccine (10), or vaccination with an MLV vaccine (10). Reproductive outcomes were measured after pigs were released into the farm herd. RESULTS: Inoculation with the WTV strain, regardless of whether a killed-virus vaccine was subsequently administered, elicited faster and more substantial production of strain-specific neutralizing antibodies, as well as a more rapid generation of interferon-gamma secreting cells, than did vaccination with the MLV vaccine. Despite the enhanced immune responses in pigs inoculated with the WTV strain, animals vaccinated with the MLV vaccine produced a mean of 2.45 more pigs than did sows exposed to the WTV strain, mainly because of a lower rate for failure to conceive. CONCLUSIONS AND CLINICAL RELEVANCE: Results suggest that current assays of immunity to PRRSV correlate only imperfectly with degree of clinical protection and that the practice of controlled exposure of sows to a circulating PRRSV strain should be reconsidered in light of negative clinical outcomes.  相似文献   

16.
The efficacy of a commercial swine influenza vaccine based on A/New Jersey/8/76 (H1N1) and A/Port Chalmers/1/73 (H3N2) strains was tested against challenge with an H1N2 swine influenza virus. Influenza virus-seronegative pigs were vaccinated twice with the vaccine when they were four and eight weeks old, or with the same vaccine supplemented with an H1N2 component. Control pigs were left unvaccinated. Three weeks after the second vaccination, all the pigs were challenged intratracheally with the swine influenza strain Sw/Gent/7625/99 (H1N2). The commercial vaccine induced cross-reactive antibodies to H1N2, as detected by the virus neutralisation (VN) assay, but VN antibody titres were 18 times lower than in the pigs vaccinated with the H1N2-supplemented vaccine. The challenge produced severe respiratory signs in nine of 10 unvaccinated control pigs, which developed high H1N2 virus titres in the lungs 24 and 72 hours after the challenge. Vaccination with the commercial vaccine resulted in milder respiratory signs, but H1N2 virus replication was not prevented. Mean virus titres in the pigs vaccinated with the commercial vaccine were 1-5 log10 lower than in the controls at 24 hours but no different at 72 hours. In contrast, the H1N2-supplemented vaccine prevented respiratory disease in most pigs. There was a 4-5 log10 reduction in the mean virus titre at 24 hours in the pigs vaccinated with this vaccine, and no detectable virus replication at 72 hours. These data indicate that the commercial swine influenza vaccine did not confer adequate protection against the H1N2 subtype.  相似文献   

17.
The efficacy of a subunit vaccine containing the Apx toxins of Actinobacillus pleuropneumoniae and transferrin‐binding proteins was determined. Ten pigs were vaccinated twice with the vaccine. Eight control animals were injected twice with a saline solution. Three weeks after the second vaccination, all pigs were endobronchially inoculated with 106.5 colony‐forming units (CFU) of an A. pleuropneumoniae serotype 9 strain. In the vaccine group, none of the pigs died after inoculation. Only one pig of the control group survived challenge. Surviving pigs were killed at 7 days after challenge. The mean percentage of affected lung tissue was 64% in the control group and 17% in the vaccine group. Actinobacillus pleuroípneumoniae was isolated from the lungs of all animals. The mean bacterial titres of the caudal lung lobes were 5.0 × 108 CFU/g in the control group and 3.0 × 106 CFU/g in the vaccine group. It was concluded that the vaccine induced partial protection against severe challenge.  相似文献   

18.
Wang X  Jiang P  Li Y  Jiang W  Dong X 《Veterinary microbiology》2007,121(3-4):215-224
Post-weaning multisystemic wating syndrome (PMWS) associated with PCV2 was one of the most costly diseases currently faced by the swine industry. In order to develop a vaccine to control this disease, we previously constructed a recombinant adenovirus expressing the capsid of PCV2. Here, we examined the protection of swine against PMWS by the recombinant adenovirus. Eighteen 32-day-old pigs were assigned to three groups each with six. Group 1 was vaccinated subcutaneously with rAd-Cap and boosted 2 weeks later. Thirty-seven days after first vaccination, Groups 1 and 2 were oronasally challenged with virulent PCV2 isolate, 4 and 7 days later, intramuscularly exposed to keyhole limpet hemocyanin (KLH). Group 3 remained unchallenged but with KLH. The results showed that high level of PCV2-specific ELISA antibody and neutralizing antibody could be induced at 37 days after first vaccination. After challenge, pigs in vaccinated group had no clearly clinical signs, although some of them had increased rectal temperatures (>/=40 degrees C) for short time. The pyrexic phase in vaccinated group was significantly lighter than that in challenge-control group (P<0.05). The relative daily weight gain in vaccinated-challenged group was similar to that in empty control group. But it was significantly high compared to the challenge-control group (P<0.05). Mean while the pathological lesions and virema presented in vaccinated group were milder than those in control group. It indicated that the recombinant adenovirus was able to confer significant protection against clinical disease and reduce pathogenic lesions induced by PCV2 challenge, even though it could not provide complete virological protection. The recombinant adenovirus might be an attractive candidate vaccine for preventing the disease associated with PCV2 infection.  相似文献   

19.
An avirulent mutant strain of Salmonella cholerae-suis was cloned for resistance to streptomycin and nalidixic acid. The mutant strain 33-13 also was used because of its avirulence and immunogenicity in mice. Weaned pigs were vaccinated with live strain 33-13; 5 pigs were vaccinated by conjunctivally administered 5.5 X 10(7) organisms (low dose), 5 were conjunctivally administered 5.5 X 10(9) organisms (high dose), and 5 pigs were administered 5.5 X 10(9) organisms (high dose) IM. Transient fever and transient fecal shedding of the vaccine strain developed in pigs vaccinated IM, but not in 2 groups of pigs vaccinated conjunctivally. After intratracheal administration of virulent strain 38-9, nonvaccinated control pigs (n = 9) developed persistent high fever, anorexia, bacteremia, diarrhea, and fecal shedding of strain 38-9, whereas vaccinated pigs remained afebrile and clinically normal. Nonvaccinated and uninfected sentinel pigs (n = 8) were kept in units of 2 pigs with each group of experimental pigs, and remained healthy throughout the experiment. Thirteen vaccinated and 7 nonvaccinated control pigs were killed 42 days after vaccination, and 2 vaccinated, 2 nonvaccinated, and 8 sentinel control pigs were killed 58 days after vaccination. Ten organs were evaluated by quantitative bacteriology on necropsy of all pigs for the presence of vaccine strain 33-13, and for virulent strain 38-9. Strain 33-13 was not found. Lung and liver, lesions were found in most of the nonvaccinated control pigs, with a high frequency of recovery of large numbers of strain 38-9 from the mesenteric lymph nodes, lungs, liver, and ileum.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Streptococcus suis capsular type 2 is still an important cause of economic losses in the swine industry. At the present time, vaccination of pigs against this infection is generally carried out with autogenous bacterins and results are equivocal. In this study, the protective effect of a live avirulent S. suis type 2 strain (#1330) which had induced a good protection in mice, was evaluated in swine. The experiment was performed in triplicate using 4 week-old piglets. A total of 15 piglets were vaccinated 3 times, 15 others were vaccinated 2 times, and 15 piglets were injected 3 times with sterile Todd-Hewitt broth. Using an indirect ELISA, an increase in the IgG response to S. suis antigens was noted in 27 of the 30 vaccinated piglets. On day 21 post-vaccination, all animals were challenged intravenously with a virulent S. suis type 2 strain (#999). In the 2 vaccinated groups, 26 animals were fully protected. Only 1 out of the 15 piglets vaccinated 3 times developed mild clinical signs. In the group vaccinated twice, 3 piglets showed clinical signs and 1 of them died after the challenge. In the control group, 7 animals died out of the 11 with clinical signs of infection. In conclusion, a protective immunity was observed in swine when using strain 1330. However, more studies are needed to assess the use of a live S. suis strain in a vaccine for pigs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号