首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  3篇
畜牧兽医   1篇
植物保护   1篇
  2017年   1篇
  2009年   1篇
  2006年   1篇
  2004年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Soil micropores that contain water at or below field capacity cannot be invaded by seminal or first‐order lateral roots of maize plants because their root diameters are larger than 10 μm. Hence, at soil‐water levels below field capacity plant roots must establish a new pore system by displacement of soil particles in order to access soil water. We investigated how decreasing soil water content (SWC) influences growth and morphology of the root system of young maize plants. Plants were grown in rhizotrons 40 cm wide, 50 cm high, and approximately 0.7 cm thick. Five SWC treatments were established by addition of increasing amounts of water to soil and thorough mixing before filling the rhizotrons. No water was added to treatments 1–4 throughout the experiment. Treatment 5 was watered frequently throughout the experiment to serve as a control. Seminal‐root length and SWC in soil layers 0–10, 10–20, 20–30, 30–40, and 40–50 cm were measured at intervals of 2–3 d on scanner images by image analysis. At 15 d after planting, for treatments 1–4 shoot dry weight and total root length were directly related to the amount of water added to the soil, and for treatments 4 and 5, total root length and shoot dry weights were similar. Length of seminal roots visible at the transparent surface of the rhizotron for all treatments was highest in the uppermost soil layer and decreased with distance from the soil surface. For all layers, seminal‐root elongation rate was at maximum above a SWC of 0.17 cm3 cm–3, corresponding to a matric potential of –30 kPa. With decreasing SWC, elongation rate decreased, and 20% of maximum seminal root elongation rate was observed below SWC of 0.05 cm3 cm–3. After destructive harvest for treatment 1–4, number of (root‐) tips per unit length of seminal root was found uninfluenced over the range of initial SWC from 0.10 to 0.26 cm3 cm–3. However, initial SWC close to the permanent wilting point strongly increased number of tips. Average root length of first‐order lateral (FOL) roots increased as initial SWC increased, and the highest length was found for the frequently watered treatment 5. The results of the study suggest that the ability to produce new FOL roots across a wide range of SWC may give maize an adaptive advantage, because FOL root growth can rapidly adapt to changing soil moisture conditions.  相似文献   
2.
It is well established that increasing soil bulk density (SBD) above some threshold value reduces plant root growth and thus may reduce water and nutrient acquisition. However, formation and elongation of maize seminal roots and first order lateral (FOL) roots in various soil layers under the influence of SBD has not been documented. Two studies were conducted on a loamy sand soil at SBD ranging from 1.25 g cm–3 to 1.66 g cm–3. Rhizotrons with a soil layer 7 mm thick were used and pre‐germinated plants were grown for 15 days. Over the range of SBD tested, the shoot growth was not influenced whereas total root length was reduced by 30 % with increasing SBD. Absolute growth rate of seminal roots was highest in the top soil layer and decreased with increasing distance from the surface. Increasing SBD amplified this effect by 20 % and 50 % for the top soil layer and lower soil layers, respectively. At the end of the experiment, total seminal roots attributed to approximately 15 % of the total plant root length. Increasing SBD reduced seminal root growth in the lowest soil layer only, whereas FOL root length decreased with SBD in all but the uppermost soil layer. For FOL, there was a positive interaction of SBD with distance from the soil surface. Both, increasing SBD and soil depth reduced root length by a reduction of number of FOL roots formed while the length of individual FOL roots was not influenced. Hence, increasing SBD may reduce spatial access to nutrients and water by (i) reducing seminal root development in deeper soil layers, aggravated by (ii) the reduction of the number of FOL roots that originate from these seminal roots.  相似文献   
3.
Ectomycorrhizae (ECM) or the root‐fungal association in forest ecosystems provide a unique soil microenvironment where soil properties and processes differ from the bulk soil. In this study, we would like to better understand the role of ECM systems in mineral weathering and its implications to soil formation and nutrient cycling in forest ecosystems. Specifically, we would like to document the spatial variations in the composition of soil solution and mineralogy of the rhizosphere as influenced by the ECM of Norway spruce + Piloderma croceum. Two‐month‐old seedlings of Norway spruce (control and colonized by P. croceum) were cultivated in special rhizotrons designed to allow spatial collection of soil solution. We used A and C horizons of a Dystric Cambisol collected from Höglwald forest near Munich. Micro suction cups (5 mm x 1mm) were installed in colonized and control rhizotrons, and soil solution was collected from September to November 2000. Our results show that the concentrations of NH , Ca2+, and Mg2+ in the soil solution were lower in <1.0 cm than in >3.0 cm distance from the roots of Norway spruce, due to the possible range of influence of Piloderma mycelium reaching about 2–3 cm from the surface of the mycorrhizal root. In the rhizotron with soil from the A horizon, a higher phosphorus content in Piloderma‐colonized seedlings was observed. X‐ray diffraction data indicate that chlorite and possibly mica are being transformed to 2:1‐expanding clay minerals (probably smectite) within <1.0 cm distance from roots. The spatial variations in soil solution composition and mineral transformation are likely to be due to Piloderma colonization and concentrated mycelial growth within <1.0 cm distance from the roots. This is also evident in more intricate growth of mycelia on surfaces of micaceous minerals as compared to quartz. We assume that Piloderma modifies soil solution and mineralogy through acquisition of essential elements for its own survival and/or for the uptake by plant roots. However, the presence of spontaneous infection with wildtype ECM in the control plots may have altered the influence of Piloderma and must be taken into consideration when interpreting our results.  相似文献   
4.
快速、准确的根系原位观测方法是根系研究中的重要技术,本研究介绍了一种根管盆栽方法,该方法在透明PVC管内种植作物,通过遮光膜保持管内黑暗环境,以实现在作物生长过程中对其根系生长的原位动态观测,且根系生长环境更接近田间实际情况,并可通过改变根管长度、半径等将其应用于田间深根作物的研究中。利用此方法、结合根系扫描技术分析了油菜和冬小麦从发芽到出苗后16 d时的根系生长情况。结果表明,出苗后7和16 d冬小麦根系和地上部干物重均大于油菜,出苗后16 d冬小麦和油菜根冠比分别为0.513和0.372。大部分根系分布在0~16 cm表层土壤中,出苗后16 d冬小麦和油菜表层土壤中的根长在总根长中的比例分别为62.60%和67.76%,根系总表面积、总体积和一级侧根数均为表层土壤中占比最多,在出苗后7 d,总根长、总表面积、总体积和一级侧根数均为冬小麦显著高于油菜,而在出苗后16 d,两种作物的总根长和总表面积差别不大,说明油菜根系生长呈先缓后快趋势。表层土壤中根系平均直径小于底层土壤,油菜根系平均直径小于冬小麦,油菜和冬小麦的根系直径均大部分在0~0.50 mm之间,随着根系生长,较细的侧根逐渐增多,根系平均直径变小。出苗后16 d内的冬小麦根系伸长速率为1.83 cm/d,大于油菜的1.51 cm/d。因此,冬小麦苗期根系生长快于油菜,油菜根系呈先缓后快的生长特性。本研究介绍的根管法是一种原位研究根系的有效方法。  相似文献   
5.
Myriophyllum aquaticum is an aquatic plant of still or slow flowing waters. The species mostly occurs in its emerged growth form in dense stands, but submerged shoots can also be found. Due to its rapid growth, M. aquaticum is considered one of the most important aquatic weeds worldwide. In southern Europe, M. aquaticum occurs in irrigation and drainage systems, rice fields and lowland wetlands. In this study, root development and growth response of M. aquaticum to different water levels and nutrient availabilities were investigated in a rhizotron experiment under Central European climatic conditions. The species shows an ability to respond to drained soil conditions by a rapid root growth (up to >1 cm day−1), resulting in a deep root system under drained conditions. In waterlogged soil, the root system spreads more horizontally. Root density increased with increasing nutrient availability. Root:shoot ratio increased significantly with decreasing nutrient availability. In addition, total shoot length, shoot biomass, root biomass and total biomass differed significantly between different water levels and different nutrient availabilities. Relative growth rate increased with increasing water level and nutrient availability. Shoot porosity was higher in nutrient rich substrate than in nutrient low substrate. Root porosity increased with increasing water level. In conclusion, M. aquaticum shows a high tolerance to different water levels, which may be important for future habitat conditions in waterbodies and wetlands in Central Europe under the impact of global change with increased water level fluctuations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号