首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
水产渔业   8篇
畜牧兽医   3篇
  2021年   1篇
  2014年   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   2篇
  2002年   2篇
  1978年   1篇
排序方式: 共有11条查询结果,搜索用时 194 毫秒
1.
Peptide transporter 1 (PepT1) is a transporter responsible for absorbing dipeptide and tripeptide in enterocytes and is upregulated by dipeptide in mammals. It has not been certain whether intestinal PepT1 expression is responsive to dipeptides in chickens because of the lack of in vitro study using the cultured enterocytes. This study established a primary culture model of chicken intestinal epithelial cells (IECs) in two-dimensional monolayer culture using collagen gel by which the response of chicken PepT1 gene expression to dipeptide stimuli was evaluated. The cultured chicken IECs showed the epithelial-like morphology attached in a patch-manner and exhibited positive expression of cytokeratin and epithelial cadherin, specific marker proteins of epithelial cells. Moreover, the chicken IECs exhibited the gene expression of intestinal cell type-specific marker, villin1, mucin 2, and chromogranin A, suggesting that the cultured IECs were composed of enterocytes as well as goblet and enteroendocrine cells. PepT1 gene expression was significantly upregulated by synthetic dipeptide, glycyl-l-glutamine, in the cultured IECs. From the results, we herein suggested that dipeptide is a factor upregulating PepT1 gene expression in chicken IECs.  相似文献   
2.
This study aimed to investigate the effects of dietary crude palm oil (CPO) on fatty acid metabolism in liver and intestine of rainbow trout. Triplicate groups of rainbow trout for 10 weeks at 13 °C were fed on diets in which CPO replaced fish oil (FO) in a graded manner (0–100%). At the end of the trial, fatty acid compositions of flesh, liver and pyloric caeca were determined and highly unsaturated fatty acid (HUFA) synthesis and fatty acid oxidation were estimated in isolated hepatocytes and caecal enterocytes using [1‐14C]18:3n‐3 as substrate. Growth performance and feed efficiency were unaffected by dietary CPO. Fatty acid compositions of selected tissues reflected the dietary fatty acid composition with increasing CPO resulting in increased proportions of 18:1n‐9 and 18:2n‐6 and decreased proportions of n‐3HUFA, 20:5n‐3 and 22:6n‐3. Palmitic acid, 16:0, was also increased in flesh and pyloric caeca, but not in liver. The capacity of HUFA synthesis from 18:3n‐3 increased by up to threefold in both hepatocytes and enterocytes in response to graded increases in dietary CPO. In contrast, oxidation of 18:3n‐3 was unaffected by dietary CPO in hepatocytes and reduced by high levels of dietary CPO in enterocytes. The results of this study suggest that CPO can be used at least to partially replace FO in diets for rainbow trout in terms of permitting similar growth and feed conversion, and having no major detrimental effects on lipid and fatty acid metabolism, although flesh fatty acid compositions are significantly affected at an inclusion level above 50%, with n‐3HUFA reduced by up to 40%.  相似文献   
3.
The substitution of fish oil with wax ester‐rich calanoid copepod‐derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously indicated lower lipid digestibility. This suggests that the fatty alcohols (FAlc) present in wax esters may be a poorer substrate for intestinal enzymes than the fatty acids (FA) in triacylglycerol (TAG), the major lipid in fish oil. The hypothesis tested was that the possible lower utilization of dietary FAlc by salmon enterocytes is at the level of uptake and that subsequent intracellular metabolism was identical to that of FA. A dual‐labelled FAlc–FA metabolism assay was employed to determine simultaneous FAlc and FA uptake and relative utilization in enterocytes isolated from pyloric caeca of Atlantic salmon fed either a diet supplemented with fish oil or wax ester‐rich Calanus oil. The diets were fed for 10 weeks before caecal enterocytes from each dietary group were isolated and incubated with equimolar mixtures of either [1‐14C]16:0 FA and [9,10(n)‐3H]16:0 FAlc, or [1‐14C]18:1n‐9 FA and [9,10(n)‐3H] 18:1n‐9 FAlc. Uptake was measured after 2 h with relative utilization of labelled FAlc and FA calculated as a percentage of uptakes. Differences in uptake were observed, with FA showing higher uptake than FAlc, and 18:1 chains a higher uptake than 16:0. A proportion of unesterified FAlc was possibly recovered in the cells, but the majority of FAlc was recovered in lipid classes such as TAG and phospholipids indicating substantial conversion of FAlc to FA followed by esterification. However, incorporation of FA and FAlc into esterified lipids was higher when derived from FA than from FAlc. Twenty‐five to fifty percentage of the absorbed 16:0 FA was recovered in TAG fraction of the enterocytes compared with 15–75% of 18:1 FA. Twenty to thirty percentage of the absorbed 16:0 FA was recovered in the phosphatidylcholine fraction of the enterocytes compared with only 5–15% of the 18:1 FA. Less than 15% of the fatty chains taken up by the cells were used for energy production, with significantly higher oxidation of 18:1 in enterocytes from fish fed the fish oil diet compared with the Calanus oil diet. However, overall, dietary copepod oil had little effect on FAlc and FA metabolism. Metabolic modification by elongation and/or desaturation was generally low at 1–5% of the uptake. We conclude that our hypothesis was generally proved in that the uptake of FAlc by salmon enterocytes was lower than the uptake of FA and that subsequent intracellular metabolism of FAlc was similar to that of FA. However, unesterified FAlc was possibly recovered in the cells suggesting that the conversion to FA may not be concomitant with uptake.  相似文献   
4.
We hypothesized that replacing fish oil with 18:3n-3-rich linseed oil may enable salmon to maintain the levels of tissue n-3HUFA levels through a combination of increased desaturation activity and increased substrate fatty acid provision. To this end we investigated desaturation/elongation of [1-14C18:3n-3 in hepatocytes and intestinal enterocytes, and determined the extent to which 18:3n-3 was oxidized and desaturated by measuring both simultaneously in a combined assay. Salmon smolts were stocked randomly into five seawater pens and fed for 40 weeks on diets in which the fish oil was replaced in a graded manner by linseed oil. At the end of the trial, fatty acyl desaturation/elongation and oxidation activities were determined in isolated hepatocytes and intestinal enterocytes using [1-14C]18:3n-3 as substrate, and samples of liver and intestinal tissue were collected for analysis of lipid and fatty acid composition. The results showed that, despite increased desaturation of [1-14C]18:3n-3 in hepatocytes, provision of dietary 18:3n-3 did not prevent the decrease in tissue n-3HUFA in fish fed linseed oil. Intestinal enterocytes were a site of significant fatty acid desaturation but, in contrast to hepatocytes, the activity was not increased by feeding linseed oil and was generally lower in fish fed linseed oil compared to fish fed only fish oil. In contrast, oxidation of [1-14C]18:3n-3 in enterocytes was generally increased in fish fed linseed oil compared to fish fed the diet containing only fish oil. However, oxidation of [1-14C]18:3n-3 in hepatocytes was 4- to 8-fold lower than in enterocytes and was not affected by diet. Furthermore, oxidation of [1-14C]18:3n-3 in enterocytes exceeded desaturation irrespective of dietary treatment, whereas similar amounts of [1-14C]18:3n-3 were desaturated and oxidized in hepatocytes from fish fed only fish oil and desaturation exceeded oxidation by 3-fold in fish fed the diet containing 100% linseed oil. The molecular mechanisms underpinning these results were discussed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
5.
Rainbow trout (Oncorhynchus mykiss Walbaum) were fed purified diets containing fish oil for six weeks and then soybean lecithin or soybean oil for 25 days. The gastrointestinal tract segments, stomach, midgut and hindgut were then sampled for lipid and fatty acid composition and electron microscopy. Membrane lipid class composition was fairly similar in all three segments of trout fed fish oil. Hindgut contained slightly more phosphatidylserine than stomach and midgut, while midgut contained more phosphatidylcholine and less lysophospatidylcholine/sphingomyelin. Feeding soybean products appeared to marginally decrease free cholesterol. The fatty acid compositions of the main lipid classes showed significant regional differences. In control fish, stomach had higher levels of arachidonic acid (20:4n-6) and n-6 polyunsaturated fatty acids than midgut and hindgut, and lower content of docosahexaenoic acid (22:6n-3) and n-3 polyunsaturated fatty acids. Midgut phosphatidylethanolamine also had higher levels of saturated fatty acids and less n-3 polyunsaturated fatty acids than the other tissues. Feeding soybean products decreased the n-3/n-6 ratio mainly due to increases in linoleic (18:2n-6) and 20:4n-6 and decreases in 22:6n-3 and eicosapentaenoic acid (20:5n-3). Phosphatidylcholine and to a lesser extent phosphatidylethanolamine adapted more readily to dietary changes by major increases in 18:2n-6 and C20−22 n-6 polyunsaturated fatty acids. The composition of phosphatidyl-serine and -inositol appeared to be under more strict metabolic control. Linoleic acid hardly increased at all while the increase in other n-6 polyunsaturated fatty acids was less pronounced than for the other lipid classes. Regardless of lipid class, stomach resisted dietary changes more strongly than midgut and hindgut. Increases in n-6 polyunsaturated fatty acids were minor as were the loss of n-3 polyunsaturated fatty acids. The dead-end product 20:2n-6 accumulated to a higher degree in hindgut phosphatidyl-ethanolamine and -coline compared to midgut and stomach, suggesting that the activity of Δ6 desaturation is higher in the anterior part of the intestine where most of the lipid is absorbed. Feeding soybean oil caused massive accumulation of free lipid droplets in midgut enterocytes while little lipid droplets were observed in trout fed fish oil or soybean lecithin. Since both soybean products influenced intestinal composition to the same degree, altered fatty acid profiles in membranes is not responsible for the observed lipid accumulation. This supports previous observations in Arctic charr (Salvelinus alpinus L.), suggesting that fish may require exogenous phospholipids in order to sustain a sufficient rate of lipoprotein synthesis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
Turbot Scophthalmus maximus, larvae were start‐fed with formulated feeds containing marine phospholipids (MP) or soya phospholipids (SP). The experiment was performed with six experimental groups, four groups were given formulated feeds, one group was given live feed and one group was starved. Phospholipid (PL) contents of the formulated feeds were respectively 5% MP, 15% MP, 5% SP and 15% SP. Larvae were offered feed from day 3 post‐hatch. There was no significant size difference on day 5 between the group fed 15% MP and the group given rotifers. Electron microscopical examination of enterocytes was performed on larval intestine on day 5. Larvae fed 5% and 15% MP and larvae fed rotifers had normal looking enterocytes with numerous normal looking mitochondria. In the enterocytes of larvae fed 5% SP and 15% SP the mitochondria appeared swollen with a translucent matrix and fragmented cristae. Thus, MP and not SP seemed suitable as a lipid and PL source for start‐feeding turbot larvae.  相似文献   
7.
Groups of Atlantic salmon (Salmo salar L.) in feeding (guts filled with faeces) or fasted (three days of diet deprivation) states were subjected to 15 minutes of acute stress. Blood samples and intestinal tissue were collected and prepared for chemical and ultrastructural analyses at intervals post stress until 53 h of recovery. Subjecting fish to acute stress led to significant alterations of the ultrastructure of the enterocytes lining the gastrointestinal tract (GI tract). The most notable effect was substantial damage to the intercellular junctional complexes in midgut regions. These effects appeared within the first hour after stress, were maintained for at least 12 h and were more pronounced in fed than fasted fish. In contrast, hindgut was influenced less by stress and damage was rarely observed. Stress also influenced fish intestinal microbiota. Adherent bacteria decreased in both midgut and hindgut of stressed fish, and this was accompanied by a significant increase in the bacterial contents of faeces. It is suggested that this was due to the sloughing off of mucus eliminating existing microflora and allowing remaining bacteria (also pathogenic) in the gut lumen to colonize the surface of the enterocytes. Although blood haematocrit and plasma cortisol increased following stress, the response appeared to be greater in fasted fish. There were also significant differences in carbohydrate metabolism. While liver glycogen stores were depleted in fasted fish following the mobilization of glucose into plasma, liver glycogen was never depleted in fed fish. As a consequence, plasma glucose levels remained high for more than 12 h of recovery. In fed fish, plasma lactate was also higher than in fasted salmon, and the clearance rate appeared slower. Acute stress induced oxidative stress, as measured through plasma malondialdehyde, but the effect was marginal and nonsignificant. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
8.
Advanced lesions in the jejunal mucosa in virus enteritis of mink were studied by scanning electron microscopy. The changes were found to be in good accordance with those observed in the light microscope, and included ballooned degeneration of entero-cytes, epithelial desquamation, the occurrence of fibrinous pseudo-membranes, atrophy or total loss of villi; partially atrophied villi were frequently fused. In some areas there were incipient regenerative processes, including proliferation of ballooned cells which covered the luminal surface of the damaged jejunal wall.  相似文献   
9.
维生素A对动物肠道及肠上皮细胞生长发育的影响   总被引:1,自引:1,他引:1  
牟彬 《中国饲料》2007,(7):8-10
本文就近年来维生素A与动物肠道和肠上皮细胞生长发育的相关研究作一综述。  相似文献   
10.
The effect of burbot weight (BW) and length (TL) on the efficiency of weaning under controlled conditions was investigated. Growth, survival rate, cannibalism and histological analysis of digestive tract were examined. The experiment lasted 49 days (40–89 days post hatch [DPH]). The fish (BW 0.12 g; TL 14.1 mm) were divided into four groups: a control group (C) exclusively fed Artemia sp. nauplii and groups F40, F47 and F54 that were weaned to dry feed on 40, 47 and 54 DPH, respectively. The highest survival rate was observed in groups C (78%) and F54 (58%). In group F54, similar TL (53.8 mm) and higher BW (1.36 g) at the end of experiment, in comparison with group C (43.9 mm, 0.84 g for TL and BW, respectively), were obtained. At the end of the experiment, the length of enterocytes in groups C and F54 was at a similar level (over 23 μm), whereas in group F47 was significantly lower (approximately 20 μm; P < 0.05). This study for the first time presents successful weaning of the burbot. The data indicate that live food should be offered until the fish reach 25 mm and 0.20 g.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号