首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
  3篇
综合类   1篇
  2014年   1篇
  2013年   1篇
  2008年   1篇
  2006年   1篇
排序方式: 共有4条查询结果,搜索用时 8 毫秒
1
1.
长期施肥黑土微生物区系及功能多样性的变化   总被引:9,自引:0,他引:9  
Black soil (Mollisol) is one of the main soil types in northeastern China. Biolog and polymerase chain reactiondenaturing gradient gel electrophoresis (PCR-DGGE) methods were used to examine the influence of various fertilizer combinations on the structure and function of the bacterial community in a black soil collected from Harbin, Heilongjiang Province. Biolog results showed that substrate richness and catabolic diversity of the soil bacterial community were the greatest in the chemical fertilizer and chemical fertilizer+manure treatments. The metabolic ability of the bacterial community in the manure treatment was similar to the control. DGGE fingerprinting indicated similarity in the distribution of most 16S rDNA bands among all treatments, suggesting that microorganisms with those bands were stable and not influenced by fertilization. However, chemical fertilizer increased the diversity of soil bacterial community. Principal com- ponent analysis of Biolog and DGGE data revealed that the structure and function of the bacterial community were similar in the control and manure treatments, suggesting that the application of manure increased the soil microbial population, but had no effect on the bacterial community structure. Catabolic function was similar in the chemical fertilizer and chemical fertilizer+manure treatments, but the composition structure of the soil microbes differed between them. The use of chemical fertilizers could result in a decline in the catabolic activity of fast-growing or eutrophic bacteria.  相似文献   
2.
5株产ACC脱氨酶细菌的筛选与鉴定   总被引:2,自引:0,他引:2  
【目的】从西北地区旱地小麦根际土壤中筛选产1-氨基环丙烷-1-羧酸(ACC)的细菌,为探讨该类细菌在作物上的应用提供理论依据。【方法】通过富集培养,以ACC为惟一氮源进行筛选,从旱地小麦根际土壤中分离产ACC脱氨酶的菌株,并测定其ACC脱氨酶活性。对筛选所获菌株的菌落形态进行观察,并结合生理生化指标和利用16SrDNA构建的系统发育树对分离的菌株进行鉴定。对筛选菌株的潜在促生能力(包括产3-吲哚乙酸(IAA)、铁载体的能力和溶解无机磷的能力)进行了分析。【结果】共分离出5株产ACC脱氨酶菌株,将其分别命名为BL、CL1、CL2、DL和DS;BL、CL1、CL2、DL和DS产生ACC脱氨酶的活性均较高,分别为0.028,0.065,0.068,0.077和0.018U/mg;结合菌落形态、生理生化特征和构建的系统发育树,鉴定BL和DL为阿氏肠杆菌(Enterobacter asburiae),CL1为肺炎克雷伯氏菌(Klebsiella pneumoniae),CL2为路德维希肠杆菌(Enterobacter ludwigii),DS为非脱羧勒克氏菌(Leclercia adecarboxylata)。5株细菌均能产生一定量的IAA和铁载体,且都具有溶解无机磷的能力。【结论】从旱地小麦根际土壤中分离鉴定出5株产ACC脱氨酶活性较高的细菌,且分离的细菌都具有较高的促生潜力。  相似文献   
3.
Salt-tolerant strains of Enterobacter asburiae, Bacillus thuringiensis, Moraxella pluranimalium and Pseudomonas stutzeri were evaluated for their ability to alleviate salt stress of wheat (Triticum aestivum L.) seedlings. 1-Aminocyclopropane-1-carboxylate deaminase activity of P. stutzeri S-80 and B. thuringiensis S-26 was 190 and 183 nmol h?1, respectively. Maximum levels of auxin were recorded with P. stutzeri S-80 (107 µg ml?1) and E. asburiae S-24 (143 µg ml?1) under normal and salt-stressed conditions (0.25M NaCl), respectively, with 500 µg ml?1 L-tryptophan. Auxin response mediated by rhizobacteria was also demonstrated by microscopically assaying the transgenic auxin-responsive reporter DR5::GUS expression tomato (Solanum lycopersicum L. cv. MicroTom). In pot trials, seedlings fresh and dry biomass witnessed highly significant improvements of 1- and 2.2-folds, respectively, with M. pluranimalium S-29 (at 100 mM NaCl) and E. asburiae S-24 (150 mM NaCl), over control. At final harvest, maximum increase in number of tillers (up to 94%) and seed weight (up to 40%) was recorded with E. asburiae S-24 and M. pluranimalium S-29 at 200 mM salt stress. In conclusion, newly isolated strains of M. pluranimalium S-29, E. asburiae S-24 and P. stutzeri S-80 enhanced the growth of T. aestivum by mitigating the salt stress of plants.  相似文献   
4.
Some plant-growth-promoting rhizobacteria (PGPR) promote plant growth by lowering the endogenous ethylene synthesis in the roots through their 1-aminocylopropane-1-carboxylate (ACC)-deaminase activity. However, in the vicinity of the roots may decrease the efficiency of these PGPR by stimulating ACC-oxidase activity resulting in greater ethylene production by the roots. This study was designed to assess the performance of PGPR containing ACC-deaminase for improving growth and yield of maize grown in N-amended soil. Several strains of rhizobacteria containing ACC-deaminase were screened for their growth-promoting activity in maize roots under gnotobiotic conditions. Six strains were selected and their effectiveness in soil amended with N at a concentration of 175 kg ha−1 (1050 mg pot−1) was investigated by conducting a pot trial on maize. Significant increases in plant height, root weight and total biomass were observed in response to inoculation. Based upon the results of pot trials, the three most efficient strains were selected and tested in the field for their effectiveness in the presence and absence of N fertilizer. Results of the field trial revealed that the inoculum performed relatively better in the absence of N-fertilizer application. Pseudomonas fluorescens biotype G (N3) was the most effective strain both in the presence and absence of N fertilizer. Results may imply that even in the presence of optimum levels of nitrogenous fertilizers, inoculation with rhizobacteria containing ACC-deaminase activity could be effective to improve the growth and yield of inoculated plants.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号