首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
林业   2篇
  16篇
  2014年   2篇
  2011年   3篇
  2010年   3篇
  2009年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
排序方式: 共有18条查询结果,搜索用时 265 毫秒
1.
Peatlands are highly valued for their range of ecosystem services, including distinctive biodiversity, agricultural uses, recreational amenities, water provision, river flow regulation and their capacity to store carbon. There have been a range of estimates of carbon stored in peatlands in the United Kingdom, but uncertainties remain, in particular with regard to depth and bulk density of peat. In addition, very few studies consider the full profile with depth in carbon auditing. The importance of sub‐peat soils within peatland carbon stores has been recognized, but remains poorly understood and is included rarely within peatland carbon audits. This study examines the importance of the carbon store based on a study of blanket peat on Dartmoor, UK, by estimating peat depths in a 4 × 1 km survey area using ground penetrating radar (GPR), extraction of 43 cores across a range of peat depth, and estimation of carbon densities based on measures of loss‐on‐ignition and bulk density. Comparison of GPR estimates of peat depth with core depths shows excellent agreement, to provide the basis for a detailed understanding of the distribution of peat depths within the survey area. Carbon densities of the sub‐peat soils are on average 78 and 53 kg C/m3 for the overlying blanket peat. There is considerable spatial variability in the estimates of total carbon from each core across the survey area, with values ranging between 56.5 kg C/m2 (1.01 m total depth of peat and soil) and 524 kg C/m2 (6.63 m total depth). Sub‐peat soil carbon represents between 4 and 28 per cent (mean 13.5) of the total carbon stored, with greater values for shallower peat. The results indicate a significant and previously unaccounted store of carbon within blanket peat regions which should be included in future calculations of overall carbon storage. It is argued that this store needs to be considered in carbon audits.  相似文献   
2.
周文昌  崔丽娟 《土壤学报》2014,51(2):226-237
泥炭湿地占全球陆地表面积的2%~3%和全球湿地面积的40%~70%,却存储3.0×1017~6.0×1017g碳。以前有关泥炭湿地碳储量的研究主要偏重于土壤,尤其在北方,缺乏对植被和枯枝落叶层的综合报道。本文综述了近些年来全球泥炭地碳储量(土壤碳储量、植被碳储量和枯枝落叶层碳储量)核算的研究进展。目前,全球泥炭地碳储量的核算仍存在较大的不确定性,其主要原因是全球泥炭地碳储量核算方法的数据信息不足,缺乏植被生物量、地表凋落物、碳质量分数、深度、容重和面积等全面数据,尤其是关于全球泥炭地面积较大的地区或国家;其次,人为干扰活动也进一步增加了全球泥炭地碳储量估算的不确定性,使得碳储量估算变得更困难。我国湿地面积居亚洲第一,世界第四,然而泥炭地/湿地有机碳储量估算与其他国家比较,相差较大,数据信息不足且存在较大波动。因此,为了提高泥炭湿地碳储量的估计精度和预测陆地生态系统应对气候变化响应机制的准确性,进一步加大泥炭地碳储量研究是非常必要的。  相似文献   
3.
Abstract. Demand for water from catchments dominated by upland peat as a source of drinking water supplies in the UK is likely to increase in the future as demand per capita continues to rise (Thomsen 1990) and/or summer droughts increase in frequency (Arnell 1992). Concern has been expressed in recent years over rising colour levels (related to dissolved organic carbon (DOC) and iron (Fe)) from such catchments (e.g. Kay et al. 1989) causing reduced drinking water quality. One of the major causes of increased DOC concentrations is rewetting following periods of relative drought (Mitchell & McDonald 1992). Experimental rewetting of a naturally drained wetland in Mid‐Wales over four years was found to substantially increase the concentrations of DOC, and Fe in the pore‐water, with peak values of >60 mg dm–3 (Fe) and >300 mg dm–3 (DOC) after rewetting, compared with typical values of <1 mgdm–3 (Fe) and <15 mg dm–3 (DOC) under the drained conditions. Seasonal peak concentrations of Fe and DOC have since remained at these higher levels. Rewetting produced a selective enrichment of the >5000 to <90 000 apparent molecular weight (AMW) material and this fraction was found to yield peak Fe concentrations. Two additional peaks of DOC were also found in the experimental wetland (not present in the control wetland), of >90 000 to <200 000 AMW and >200 000 AMW material. The AMW spectrum of DOC in the experimental wetland changed with season, and the >90 000 to <200 000 AMW fraction could only be seen in spring, representing a transient pool of carbon that is rapidly transformed in or transported from the wetland. These findings suggest that rewetting of peatland following drought (e.g. due to climate change) has the potential to reduce water quality. Moreover, recent interest in restoration (rewetting) of drained peatlands (Wheeler & Shaw 1995) could create an additional source of DOC rich water.  相似文献   
4.
The closed-chamber method is the most common approach to determine CH4 fluxes in peatlands. The concentration change in the chamber is monitored over time, and the flux is usually calculated by the slope of a linear regression function. Theoretically, the gas exchange cannot be constant over time but has to decrease, when the concentration gradient between chamber headspace and soil air decreases. In this study, we test whether we can detect this non-linearity in the concentration change during the chamber closure with six air samples. We expect generally a low concentration gradient on dry sites (hummocks) and thus the occurrence of exponential concentration changes in the chamber due to a quick equilibrium of gas concentrations between peat and chamber headspace. On wet (flarks) and sedge-covered sites (lawns), we expect a high gradient and near-linear concentration changes in the chamber. To evaluate these model assumptions, we calculate both linear and exponential regressions for a test data set (n = 597) from a Finnish mire. We use the Akaike Information Criterion with small sample second order bias correction to select the best-fitted model. 13.6%, 19.2% and 9.8% of measurements on hummocks, lawns and flarks, respectively, were best fitted with an exponential regression model. A flux estimation derived from the slope of the exponential function at the beginning of the chamber closure can be significantly higher than using the slope of the linear regression function. Non-linear concentration-over-time curves occurred mostly during periods of changing water table. This could be due to either natural processes or chamber artefacts, e.g. initial pressure fluctuations during chamber deployment. To be able to exclude either natural processes or artefacts as cause of non-linearity, further information, e.g. CH4 concentration profile measurements in the peat, would be needed. If this is not available, the range of uncertainty can be substantial. We suggest to use the range between the slopes of the exponential regression at the beginning and at the end of the closure time as an estimate of the overall uncertainty.  相似文献   
5.
Peatlands represent massive global C pools and sinks. Carbon accumulation depends on the ratio between net primary production and decomposition, both of which can change under projected increases of atmospheric CO2 and N deposition. The decomposition of litter is influenced by 1) the quality of the litter, and 2) the microenvironmental conditions in which the litter decomposes. This study aims at experimentally testing the effects of these two drivers in the context of global change. We studied the in situ litter decomposition from three common peatland species (Eriophorum vaginatum, Polytrichum strictum and Sphagnum fallax) collected after one year of litter production under pre-treatment conditions (elevated CO2: 560 ppm or enhanced N: 3 g m−2 y−1 NH4NO3) and decomposed the following year under treatment conditions (same as pre-treatment). By considering the cross-effects between pre-treatments and treatments, we distinguished between the effects on mass loss of 1) the pre-treatment-induced litter quality and 2) the treatment conditions under which the litters were decomposing. The combination between CO2 pre-treatment and CO2 treatment reduced Polytrichum decomposition by −24% and this can be explained by litter quality-driven decomposition changes brought by the pre-treatment. CO2 pre-treatment reduced Eriophorum litter quality, although this was not sufficient to predict decomposition. The N addition pre-treatment reduced the decomposition of Eriophorum, due to enhanced lignin and soluble phenols concentrations in the initial litter, and reduced litter-driven losses of starch and enhanced litter-driven losses of soluble phenols. While decomposition indices based on initial litter quality provide a broad explanation of quantitative and qualitative decomposition, they can only be taken as first approximations. Indeed, the microbial ATP activity, the litter N loss and resulting litter quality, were strongly altered irrespective of the compounds' initial concentration and by means of processes that occurred independently of the initial litter-qualitative changes. The experimental design was valuable to assess litter- and ecosystem-driven decomposition pathways simultaneously or independently. The ability to separate these two drivers makes it possible to attest the presence of litter-qualitative changes even without any litter biochemical determinations, and shows the screening potential of this approach for future experiments dealing with multiple plant species.  相似文献   
6.
There has been increasing interest in potential benefits to be gained by restoring damaged peatlands, with the majority of funding currently being driven by the recovery of protected habitats. However, few data are available linking vegetation community declines with peatland drainage, and so the potential for recovery remains difficult to predict. Surprisingly, there is a similar paucity of research demonstrating the extent of drainage impacts on grazing conditions for livestock, despite this being a priority amongst land managers. We attempt to address these two knowledge gaps, first by investigating whether ditches in blanket bog habitat have improved or increased grazing for sheep, and second by assessing the impact of ditches on the condition of vegetation communities. At an extensively drained upland blanket bog in Wales, currently undergoing ditch blocking restoration, we collected vegetation and sheep occurrence data across five catchments and over 2 years. We present evidence that drained areas had remained relatively wet and were less preferred by sheep. Furthermore, our results show that while sheep preferred graminoid-rich areas, drainage did not increase the abundance of this species group. Drainage at the site has, however, resulted in some degradation in blanket bog vegetation adjacent to ditches; although at the landscape scale, historic high grazing levels appear to explain much of the current poor ecological condition of the site. We conclude that drain-blocking restoration should not reduce sheep grazing conditions beyond their current relatively poor state, and thus in this respect may not represent a threat to hill farming productivity.  相似文献   
7.
Peat bogs of eastern North America are increasingly being mined for peat, which results in the extensive draining of these systems. First, I quantified the effects of peat mining on amphibian species richness and abundance in bog remnants adjacent to mining activity and unmined bogs. I then investigated amphibian occurrence patterns in bog remnants relative to the distance to the mined edge, after accounting for microhabitat and distance to landscape elements. The response of amphibians to peat mining varied across taxa. For instance, amphibian species richness, total amphibian captures (all spp. combined), as well as those of green frogs (Rana clamitans) were greater in unmined bogs than in bog remnants. Wood frogs (Rana sylvatica) were most abundant in unmined bogs in areas far from bog ponds, as well as in unmined bogs in areas near shrub patches. After accounting for microhabitat and landscape variables, American toads (Bufo americanus) in bog remnants were most abundant close to mined edges, whereas the other species did not respond to the proximity of mined edges. Peat mining negatively impacts amphibians occurring in bog remnants. The response of amphibians to peat mining is similar to the one of birds and plants, but differs with small mammals. Maintaining a complex mosaic of bog ponds, shrub and forest patches might help mitigate peat mining effects on amphibian patterns of abundance.  相似文献   
8.
The methane exchange in an oligotrophic mire complex was measured on the ecosystem and microform scale with the eddy covariance (EC) and the closed chamber technique, respectively. Information about the distribution of three distinct microform types in the area of interest and in each 30 min EC flux source area was derived from a high-resolution (1 m2) landcover map in combination with an analytical source weight model (Kormann and Meixner, 2001). The mean weighted coverage of flark, lawn and hummock microforms in the EC source area (0.3% : 57% : 43%) closely mirrors the overall distribution in the area of interest (0.5% : 50.1% : 49.4%), despite great differences in microform coverage between individual 30 min EC source areas. The measured ecosystem flux was fitted to the sum of three microform flux models based on environmental variables and weighted by their fractional coverage in the EC source area. This method resulted in a better representation of the ecosystem flux compared to an approach based on only one flux model for the whole ecosystem (R2 = 0.87, RMSE = 0.44 vs. R2 = 0.74, RMSE = 0.61, n = 5181) and thus constitutes a successful down-scaling of measured ecosystem scale flux to the microform scale. A comparison of down-scaled and measured microform fluxes reveals a good agreement for lawn microforms and systematic differences for flark and hummock microforms. Reasons for the differences are thought to be the limited resolution of the landcover classification and the systematic underestimation of hummock fluxes by the closed chamber technique. As a result, hummock fluxes derived by down-scaling of EC fluxes are considered to be more dependable than closed chamber fluxes. The seasonal ecosystem methane budget from gap-filled EC measurements was 9.4 ± 0.2 g CH4 m−2; the budget derived from up-scaled microform measurements was 8.0 ± 0.8 g CH4 m−2. The lower value of the latter budget is attributed to the underestimation of flark and hummock fluxes by closed chamber measurements and to the microform gap-filling procedure. Generally, estimates from up-scaled microform measurements are found to be less certain than estimates from EC measurements.  相似文献   
9.
Cutover peatlands are often rapidly colonised by pioneer plant species, which have the potential to affect key ecosystem processes such as carbon (C) turnover. The aim of this study was to investigate how plant cover and litter type affect fungal community structure and litter decomposition in a cutover peatland. Intact cores containing Eriophorum vaginatum, Eriophorum angustifolium, Calluna vulgaris and bare soil were removed and a mesh bag with litter from only one of each of these species or fragments of the moss Sphagnum auriculatum was added to each core in a factorial design. The presence or absence of live plants, regardless of the species, had no effect on mass loss, C, nitrogen (N) or phosphorus (P) concentrations of the litter following 12 months of incubation. However, there was a very strong effect of litter type on mass loss and concentrations of C, N and P between most combinations of litter. Similarly, plant species did not affect fungal community structure but litter type had a strong effect, with significant differences between most pairs of litter types. The data suggest that labile C inputs via rhizodeposition from a range of plant functional types that have colonised cutover bogs for 10-15 years have little direct effect on nutrient turnover from plant litter and in shaping litter fungal community structure. In contrast, the chemistry of the litter they produce has much stronger and varied effects on decomposition and fungal community composition. Thus it appears that there is distinct niche differentiation between the fungal communities involved in turnover of litter versus rhizodeposits in the early phases of plant succession on regenerating cutover peatlands.  相似文献   
10.
Peatlands typically exhibit significant spatial heterogeneity which can lead to large uncertainties when catchment scale greenhouse gas fluxes are extrapolated from chamber measurements (generally <1 m2). Here we examined the underlying environmental and vegetation characteristics which led to within-site variability in both CH4 and N2O emissions and the importance of such variability in up-scaling. We also consider within-site variation in the controls of temporal dynamics. Net annual emissions (and coefficients of variation) for CH4 and N2O were 1.06 kg ha−1 y−1 (300%) and 0.02 kg ha−1 y−1 (410%), respectively. The riparian zone was a significant CH4 hotspot contributing ∼12% of the total catchment emissions whilst covering only ∼0.5% of the catchment area. In contrast to many other studies we found smaller CH4 emissions and greater uptake in chambers containing either sedges or rushes. We also found clear differences in the drivers of temporal CH4 dynamics across the site, e.g. water table was important only in chambers which did not contain aerenchymous plants. We suggest that depending on the heterogeneity of the site, flux models could be improved by incorporating a number of spatially distinct sub-models, rather than a single model parameterized using whole-catchment averages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号