首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
植物保护   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
The hydrogen isotopic composition of plant leaf wax(δDwax) is used as an important tool for paleohydrologic reconstruction. However, the understanding of the relative importance of environmental and biological factors in determining δDwax values still remains incomplete. To identify the effects of soil moisture and plant physiology on δDwax values in an arid ecosystem, and to explore the implication of these values for paleoclimatic reconstruction, we measured δD values of soil water(δDwater) and δDwax values in surface soils along two distance transects extending from the lakeshore to wetland to dryland around Lake Qinghai and Lake Gahai on the northeast Qinghai-Tibetan Plateau. The results showed that the δDwater values were negatively correlated with soil water content(SWC)(R2=0.9166), and ranged from –67‰ to –46‰ with changes in SWC from 6.2% to 42.1% in the arid areas of the Gangcha(GCh) and Gahai(GH) transects. This indicated that evaporative D-enrichment in soil water was sensitive to soil moisture in an arid ecosystem. Although the shift from grasses to shrubs with increasing aridity occurred in the arid area of the GH transect, the δDwax values in surface soils from the arid areas of the two transects still showed a negative correlation with SWC(R2=0.6835), which may be due to the controls of primary evaporative D-enrichment in the soil water and additional transpirational D-enrichment in the leaf water on the δDwaxvalues. Our preliminary research suggested that δDwax values can potentially be applied as a paleo-humidity indicator on the northeast Qinghai-Tibetan Plateau.  相似文献   
2.
Changes in the distribution of soil aggregate sizes and concentrations of aggregate-associated organic carbon(OC) and nitrogen(N) in response to the fertilization of grasslands are not well understood. Understanding these changes is essential to the sustainable development of artificial grasslands. For understanding these changes, we collected soil samples at 0–20 and 20–40 cm depths from a semi-arid artificial alfalfa grassland after 27 years of applications of phosphorus(P) and nitrogen+phosphorus+manure(NPM) fertilizers on the Loess Plateau of China. The distribution of aggregate sizes and the concentrations and stocks of OC and N in total soils were determined. The results showed that NPM treatment significantly increased the proportions of 2.0 mm and 2.0–0.25 mm size fractions, the mean geometric diameter(MGD) and the mean weight diameter(MWD) in the 0–20 cm layer. Phosphorous fertilizer significantly increased the proportion of 2.0 mm size fractions, the MGD and the MWD in the 0–20 cm layer. Long-term application of fertilization(P and NPM) resulted in the accumulation of OC and N in soil aggregates. The largest changes in aggregate-associated OC and N in the 0–20 cm layer were found at the NPM treatment, whereas the largest changes in the 20–40 cm layer were found at the P treatment. The results suggest that long-term fertilization in the grassland leads to the accumulation of OC and N in the coarse size fractions and the redistribution of OC and N from fine size fractions to coarse size fractions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号