首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   70篇
  免费   2篇
  国内免费   1篇
林业   1篇
农学   1篇
  18篇
综合类   13篇
农作物   1篇
水产渔业   1篇
畜牧兽医   7篇
植物保护   31篇
  2023年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   4篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   2篇
  2003年   6篇
  2002年   1篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   1篇
  1995年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1982年   2篇
  1975年   1篇
  1969年   1篇
  1966年   1篇
  1947年   1篇
排序方式: 共有73条查询结果,搜索用时 46 毫秒
1.
2.
Monoclonal and polyclonal antibodies that bind to eggs and/or second-stage juveniles of the nematode Meloidogyne javanica were tested for their effects on the parasitic interactions between this nematode and the fungus Trichoderma. Parasitism of Trichoderma asperellum-203 and Trichoderma atroviride on nematode egg masses, eggs and juveniles was enhanced when antibodies were incorporated into in vitro parasitism bioassays. Parasitism on separated eggs (without gelatinous matrix) and their hatched juveniles was also improved, compared to controls without antibodies that did not attach fungal conidia. Improved parasitism could be due to bilateral binding of the antibodies to the nematodes and conidia, enabling better conidial attachment to the nematodes. Enhanced germination of antibody-bound conidia further improved parasitism. Differences were observed among antibodies in their effects on fungal parasitism and their interaction with Trichoderma species. We focused mainly on the egg- and juvenile-binding monoclonal antibody MISC that exhibited a stronger reaction with T. asperellum-203 than with T. atroviride. Pretreatment of this antibody with fucose inhibited its binding to nematodes and conidial attachment to nematodes, as well as conidial agglutination in the presence of the antibody. Antibody binding to juveniles affected their movement and viability, especially gelatinous matrix-originated juveniles. The fucose-specific lectin Ulex europaeus-I enhanced conidial attachment to nematode life-stages, and conidial agglutination occurred in its presence. These phenomena were inhibited by preincubating lectin with fucose. Our results suggest that carbohydrate residues, such as fucose, on the surface of the nematode and fungal conidia are involved in the antibody- and lectin-mediated improved parasitism.  相似文献   
3.
Despite the importance of soil organic matter (SOM), very few long‐term data concerning soil organic‐C dynamics are available for calibrating and evaluating C models. The long‐term 14C‐turnover field experiment, established in 1967 in Fuchsenbigl, Lower Austria, offers the unique opportunity to follow the fate of labeled C under different crop‐management systems (bare fallow, spring wheat, crop rotation) over a period of more than 35 y. Compared with the crop‐rotation and spring‐wheat treatments, the decline of total organic C was largest in the bare‐fallow treatments, because no significant C input has occurred since 1967. Nonetheless, the decline was not as fast as predicted with the original RothC‐26.3‐model decomposition rate constants. In this work, we therefore calibrated the Roth‐C‐26.3 model for the Pannonian climatic region based on the field‐experiment results. The main adjustment was in the decomposition rate constant for the humified soil C pool (HUM), which was set to 0.009 instead of 0.02 y–1 as determined in the original Rothamsted field trial. This resulted in a higher HUM pool in the calibrated model because of a longer turnover period (111 vs. 50 y). The modeled output based on the calibrated model fitted better to measured values than output obtained with the original Roth‐C‐26.3‐model parameters. Additionally, the original decomposition rate constant for resistant plant material (RPM) was changed from 0.3 to 0.6 y–1 to describe the decomposition of 14C‐labeled straw more accurately. Application of the calibrated model (modified HUM decomposition rate) to simulate removal of crop residues showed that this can entail a long‐term decline of SOM. However, these impacts are strongly dependent on the crop types and on environmental conditions at a given location.  相似文献   
4.
Abscisic acid, gibberellin and cell viability in cereal aleurone   总被引:3,自引:0,他引:3  
The aleurone layer of cereals is a secretory tissue whose activity is regulated by abscisic acid (ABA) and gibberellins (GAs). Whereas GA triggers enzyme synthesis and secretion and initiates a program that culminates in cell death, ABA prevents enzyme production and cell death. Reactive oxygen species (ROS) are key players in regulating cell viability and GA sensitizes the aleurone cell to ROS. Sensitivity of GA-treated cells results in part from a reduction in steady-state amounts of mRNAs encoding enzymes that scavenge ROS. mRNAs encoding catalase, superoxide dismutase and ascorbate peroxidase are almost undetectable in aleurone layers 24 h after incubation in GA. For layers incubated in ABA, however, the amounts of these mRNAs increase. Western blotting and enzyme activity assays confirm that GA but not ABA reduced the amount and activity of ROS scavenging enzymes (Fath et al., 2001b). Substantial amounts of ROS are produced by enzymes engaged in lipid metabolism, and by the electron transport chain in the mitochondria. Aleurone layers contain abundant stores of triglycerides and ROS are produced as these lipids are rapidly converted to sugars. We hypothesize that the ROS produced in GA-treated aleurone cells bring about cell death by disrupting the plasma membrane. Aleurone cells incubated in ABA, on the other hand, are better able to maintain redox balance. ABA does not initiate rapid triglyceride metabolism, and the activities of ROS-scavenging enzymes remain high in ABA-treated cells. We conclude that GA initiates a metabolic cascade in aleurone cells that results in death from ROS. ABA maintains viability by keeping ROS under control. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
5.
6.
The optimal conditions required to market Trichoderma as a biocontrol agent against soilborne fungi and nematodes are discussed. These include a proper formulation, an efficient delivery system, and alternative methods for Trichoderma's application.The implementation of Trichoderma in integrated pest management (IPM) can be achieved using a soil treatment which combines reduced amounts of biocides/fungicides and the Trichoderma preparation. Biocontrol activity can be increased by combining two (or more) types of biocontrol agents. Moreover, the construction of a genetically modified Trichoderma can lead to the improvement of certain traits which are absent or not highly expressed in the native microorganism isolated from its natural habitat.Different Trichoderma harzianum and T. lignorum isolates were tested for their nematicidal activity against the root-knot nematode Meloidogyne javanica. In short-term experiments, improved growth of nematode-infected plants and decreases in the root-galling index and the number of eggs per gram of root were achieved when nematode-infested soils were pre- exposed to the T. harzianum preparations. A long-term experiment resulted in improved growth and higher yield of nematode-infected plants, but no significant change in the galling index, either by pre-exposure of the fungus to the soil or by enrichment in the root-ball.As biocontrol is an integral part of the IPM philosophy, judicious use of Trichoderma against soilborne pathogens, when demonstrated to be consistently effective, practical and economic, can serve as a model for the introduction and implementation of other biocontrol means into IPM.  相似文献   
7.
Pythium damping-off and root-rot are among the most important soilborne diseases of greenhouse plants and seedlings grown in container media. It has been shown previously that composts may be conducive, suppressive or partially suppressive to Pythium diseases. The major goal of this work was to investigate rapid, practical and reliable methods for determining of the degree of suppressiveness of container media to Pythium damping-off. Several inoculation methods were tested in greenhouse bioassays, survival of propagules in suppressive versus conducive media was studied under laboratory conditions. Although both greenhouse and laboratory tests could indicate disease suppression, a bioassay with cucumber seedlings is suggested to be the most simple, effective and comprehensive method for testing suppression of Pythium diseases in compost amended container media.  相似文献   
8.
Organic amendments and green manure are potential alternatives to the harmful chemical control means currently used against plant-parasitic nematodes. In this work, Chrysanthemum coronarium was applied to the soil as a green manure to control the root-knot nematodes Meloidogyne incognita and M. javanica. Chrysanthemum coronarium significantly reduced nematode infection of tomato roots and improved plant-top fresh weight, both in the greenhouse and in microplots. Other green manures, derived from Anthemis pseudocotula, wild chickpea (Cicer pinnatifidum), Geranium spp. and wheat, were not as effective as C. coronarium. Chrysanthemum coronarium, retained its nematicidal activity even when applied as a dried material. Only mature C. coronarium plants, in their flowering stage, exhibited nematode control activity, but the green plant parts were more effective than the flowers. An aqueous extract of C. coronarium exhibited in vitro, nematostatic activity towards M. incognita and M. javanica second-stage juveniles and inhibited their hatching from eggs and egg-masses; its nematostatic activity was expressed also against other phytonematode species such as Heterodera avenae and Pratylenchus mediterraneus, but did not affect the beneficial entomopathogenic nematode Steinernema feltiae.  相似文献   
9.
10.
Shlevin E  Saguy IS  Mahrer Y  Katan J 《Phytopathology》2003,93(10):1247-1257
ABSTRACT Structural (space) solarization of a closed, empty greenhouse for sanitation involves dry heating to 60 degrees C and higher and low relative humidity (RH), under a fluctuating temperature and RH regime. Survival of inocula of Fusarium oxysporum f. sp. radicis-lycopersici and Sclerotium rolfsii during structural solarization was studied for 4 years (total of 12 experiments) in an attempt to develop a dynamic model for expressing the thermal inactivation of the pathogens. After 20 days of exposure, the populations of F. oxysporum f. sp. radicis-lycopersici and S. rolfsii were reduced by 69 to 95% and by 47.5 to 100%, respectively. The Weibull distribution model was applied to describe pathogen survival. The Weibull rate parameter, b, was found to follow an exponential (for F. oxysporum f. sp. radicis-lycopersici) and the Fermi (for S. rolfsii) functions at constant temperatures. To improve the applicability of the model, fluctuating conditions of both temperature and RH were utilized. The Weibull distribution derivative, expressed as a function of temperature and moisture, was numerically integrated to estimate survival of inocula exposed to structural solarization. Deviations between experimental and calculated values derived from the model were quite small and the coefficient of determination (R (2)) values ranged from 0.83 to 0.99 in 9 of 12 experiments, indicating that ambient RH data should be considered. Structural solarization for sanitation could be a viable component in integrated pest management programs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号