首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
农学   2篇
  1篇
植物保护   1篇
  2021年   2篇
  2015年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Ahmad  Gufran  Khan  Abrar A.  Mohamed  Heba I. 《Gesunde Pflanzen》2021,73(4):623-637

Acid rain is one of the major environmental problems that causes plant morphological and physiological disorders. But there are few studies about the impact of acid rain on vegetable crops. This work aimed to study the various effects of simulated acid rain (SAR) at different levels of pH (5.0, 4.5, 4.0, 3.5 or 3.0) on growth, yield, pigment content, protein, carbohydrate, water content in leaves, minerals (NPK), oxidative damage and the activity of various antioxidants in pumpkin. The results show that the plant growth, yield, chlorophyll, carotenoids, protein, carbohydrates, leaf water content, NPK in the leaves of the pumpkin crop decreased significantly with increasing levels of acidity of SAR as compared to the untreated set. H2O2 and MDA are increased by SAR treatment which depends on the level of pH value of SAR. The highest value of hydrogen peroxide and malondialdehyde was recorded at pH 3.0 and lower at pH 5.0 of SAR treatment on the pumpkin crop. In contrast, superoxide dismutase, catalase, nitrate reductase and proline contents were accumulated at pH 3.0 and degraded at pH 5.0 of SAR treatment on pumpkin as compared to control. In conclusion, our findings suggest that pumpkin produces more reactive oxygen species (ROS) scavenging SAR stress through the production of enzyme and non-enzyme antioxidant compounds at 3.0 pH. Meanwhile, growth inhibition as well as the photosynthesis of pumpkin and the magnitude of oxidative damage increased as acidity increased (pH 3.0 of SAR).

  相似文献   
2.

In major cities, air quality is of significant concern because of its negative effect on the health of the region’s living conditions, climate, and economy. Recent studies show the significance of the data on microlevel pollution which includes severe air pollutants and their impacts on human. Conventional methods of measuring air quality need skilled personnel for accurate data measurement that are based on stationary and limited measuring station networks. However, it is costly to seize the spatio-temporal variability and to recognize pollution hotspots that are necessary to develop real-time exposure control strategies. Due to the restricted accessibility of information and the non-scalability of standard techniques for air pollution monitoring, a real-time system with both higher spatial and temporal resolution is crucial. In recent times, unmanned aerial vehicles (UAVs) mounted with various sensors have been implemented for on-site air quality surveillance as they can offer new methods and research possibilities in air pollution and emission tracking, as well as in the study of environmental developments. An extensive literature review has been conducted, and it was observed that there are types of UAVs and types of sensors that are used for air quality monitoring for the parameters like CO, SO2, NO2, O3, PM2.5, PM1.0, and black carbon. Low-cost wireless sensors have been using for monitoring purpose in the past studies, and when results obtained are validated with the stationary monitoring instruments, the coefficient of correlation (R2) is found to be varied from 0.3 to 0.9. The difficulties, however, are not just technical, but at present time, policies and laws, which vary from country to country, symbolize the major challenge to the extensive use of UAVs in air quality/monitoring studies.

  相似文献   
3.
An investigation was carried out with 25 populations of Rauwolfia serpentina to assess variability, association of yield components and their direct and indirect effects on yield. Analysis of variance revealed significant differences among 25 populations of R. serpentina for all the traits. Heritability estimates in broad sense were high for most of the traits and moderate for number of primary root branch. As in case of heritability, expected genetic advance was the highest for plant height, number of primary stem branch, reserpine content (%) in root, the most important trait for commercial utilization. Correlation analysis indicated positive and significant phenotypic correlation of reserpine content with root length and total alkaloid content (%) and significant negative association with root diameter. The partitioning of genotypic correlation coefficient into direct and indirect effects revealed total alkaloid content and root yield were the most important direct contributors to reserpine percent in root. It is concluded that accessions with more alkaloid content and root length are likely to yield more reserpine content in root and these characters can be considered to be reliable traits for selection of high reserpine content in root.  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号