首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
园艺   1篇
  2011年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
We compare the accuracy of predicting the occurrence of 11 bird species in montane meadows of the Greater Yellowstone National Park ecosystem, in the states of Montana and Wyoming, USA. We used remotely sensed, landscape, and habitat data. The meadow type, as determined from the remotely sensed data, was highly correlated with abundances of six of the 11 bird species. Landscape variables significant in predicting occurrence were selected using a stepwise multiple regression for each bird species. These variables were then used in a multiple regression with the variable meadow type. As expected, the abundances of the generalist species (American Robin, Dark-eyed Junco, White-crowned Sparrow, Brewer's Blackbird, and Chipping Sparrow) were not strongly correlated with landscape variables or meadow type. Conversely, abundances of the Common Snipe, Common Yellowthroat, Lincoln's Sparrow, Savannah Sparrow, Vesper Sparrow, and Yellow Warbler were highly correlated with meadow type and landscape variables such as percent cover of willow (Salix spp.), graminoid, woody vegetation, sagebrush (Artemisia spp.), and graminoid and shrub biomass. The results from our study indicate that remotely sensed data are applicable for estimating potential habitats for bird species in the different types of montane meadows. However, to improve predictions about species in specific sites or areas, we recommend the use of additional landscape metrics and habitat data collected in the field.  相似文献   
2.
Market and policy incentives that encourage agricultural intensification, such as incentives for bioenergy, may contribute to biodiversity decline when they encourage a large-scale conversion of native and semi-natural ecosystems to production fields. In order to appreciate the impact of these incentives on biodiversity, it is imperative to better understand how native and semi-natural ecosystems contribute to plant diversity and composition. We studied the five most common types of managed grasslands in Northeastern Kansas, a region undergoing agricultural intensification. We analyzed plant community data recorded at three spatial scales in 98 managed grassland sites, and examined patterns of diversity and composition of plant species and functional groups; and spatial turnover of species and functional groups measured at different spatial scales. We found reduced soil quality and plant diversity as well as a lack of scale-dependent community patterns on sites that were historically cultivated. Forage management practices (haying or grazing) altered plant diversity and composition in native grassland remnants but not in non-native grasslands. We identified several opportunities where changes to existing management practices could benefit both conservation and bioenergy production objectives. Recommendations to conserve biodiversity include increasing the use of hay management or other biomass collection on native grassland remnants and improving the Conservation Reserve Program by increasing enrollment, adding more native species to seed mixes, and incorporating a periodic biomass collection. We also found that using measures of spatial turnover in community composition added important insights in understanding the effects of management decisions on biodiversity.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号