首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
畜牧兽医   3篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
排序方式: 共有3条查询结果,搜索用时 82 毫秒
1
1.
Mao pomace meal (MPM) contains condensed tannins and saponins at 92 and 98 g/kg, respectively, and these substances can be used to manipulate ruminal fermentation in ruminant. Four multiparous lactating Holstein cows with 45 ± 5 days in milk were randomly assigned according to a 4 × 4 Latin square design to receive four different levels of MPM supplementation at 0, 100, 200, and 300 g/head/day, respectively. Cows were fed with concentrate diets at 1:1.5 of concentrate to milk yield ratio and urea‐treated (3%) rice straw was fed ad libitum. The results revealed that feed intake, nutrient digestibility, blood urea nitrogen, and hematological parameters were not affected by MPM supplementation (> 0.05). However, ruminal pH and propionate were increased quadratically (< 0.05) in cows receiving MPM whereas acetate, acetate to propionate ratio and estimate methane production were decreased (p < 0.05). Supplementation of MPM linearly decreased ruminal ammonia nitrogen and protozoal population at 4 hr postfeeding (p < 0.05). Milk production and milk composition were similar among treatments (p > 0.05). In conclusion, supplementation of MPM at 200 g/head/day could modify ruminal fermentation and reduce methane production without adverse effect on feed intake, digestibility, hematological parameters, and milk production in dairy cows.  相似文献   
2.
The objectives of this study were to compare the efficiency of a split single injection of follicle-stimulating hormone (FSH) given by either intramuscular (split-single IM) or ischiorectal fossa (split-single IRF) injection to the traditional treatment and to determine the concentrations of FSH. The temperature and humidity index (THI) values were interpreted together with the ovarian responses and embryo characteristics. The ovarian responses in the split-single IRF group were similar to those of the control group (p > .05) but higher compared with the split-single IM group (p < .05). Higher peak levels of plasma FSH in the split-single IRF group did not differ compared with the control group (p > .05) but were lower in split-single IM administration (p < .05). The results showed a significant decrease in the numbers of large follicles and corpora lutea (CLs) in the moderate THI compared with low and high THI (p < .05). The high THI affected ovulation rate as well as the numbers of transferable embryos and degenerated embryos (p < .05). In conclusion, the split-single IRF administration had a comparable superovulatory response to the traditional twice-daily protocol. Moreover, the ovulation rate, ovarian follicle responses, and embryo quality were affected by heat stress.  相似文献   
3.
Boar cryopreserved semen is scarcely used for artificial insemination due to its quality which is largely reduced by membrane lipid peroxidation. This present study was designed to improve the post‐thawed boar semen quality by determining the optimal level of sericin supplementation (antioxidants) in semen extender. Five levels of sericin supplementation between 0% and 1% (w/v) were examined. Semen was frozen by the liquid nitrogen vapor method, thawed slowly at 5°C for 5 min, and used for the evaluation of sperm quality. The results indicated 0.5%–1% sericin supplementation was more effective on maintenance of sperm viability, acrosome integrity, and mitochondrial functions during freezing–thawing. Moreover, 0.75% sericin supplementation was most protective toward total sperm motility and sperm progressive motility. Additionally, 0.25%–0.75% sericin supplementation significantly suppressed increases in the index of lipid peroxidation. In conclusion, 0.75% sericin is recommended as an alternative component of the freezing extender to improve cryopreserved boar semen. However, further research using AI will be necessary to demonstrate that this indication can be applied to the production of offspring in the farms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号