首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
畜牧兽医   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 93 毫秒
1
1.
This study reports on the predictive relationship between serological, immunological and pathological responses following experimental inoculation with incremental doses of Fasciola gigantica in sheep. Fifty, 6-month-old, naive Merino wethers were allocated to one of 5 experimental groups, four of which received 50, 125, 225 and 400 metacercariae, respectively, whilst a 5th group acted as non-inoculated control. Strong individual correlations were observed between liver score, GLDH (glutamate dehydrogenase), GGT (gamma glutamyl transferase), CatL5 (cathepsin L5) antibody titre (IgG1, IgA), eosinophilia, and the total worm count or worm biomass. A combination of multiple indicator traits performed significantly better than any single indicator trait alone. The best predictive index accounted for up to 88% of observed worm burden (Wb) if information on inoculation dose was available. Without knowledge of inoculation dose, such as under field conditions, up to 67% of variation in worm burden could be predicted. In contrast, the best single predictor variable (liver damage score) accounted for up to 50% of worm burden, and in the absence of post-slaughter information, serum levels of anti-cathepsin IgA antibody titres accounted for 35% of predicted variation in worm burden. The utility of a predictive index under both field and experimental inoculation conditions is discussed.  相似文献   
2.
This study reports the early biochemical changes in plasma, comparative host-immune responses and parasite recovery data in Merino sheep during the first 10 weeks of infection with Fasciola gigantica and Fasciola hepatica. One group of sheep were uninfected, four groups of sheep received incremental challenge doses of F. gigantica metacercariae (50, 125, 225 and 400, respectively) and the sixth group was challenged with 250 F. hepatica metacercariae. At 10 weeks post infection (wpi), sheep challenged with F. hepatica showed the greatest fluke recovery (mean 119, range 84-166); a significantly higher biomass of parasites recovered (2.5-fold greater than the highest dose of F. gigantica); and a greater mean % parasite recovery (39.3%, range 27-55%) than any group challenged with F. gigantica. Within the groups dosed with F. gigantica a strong dose-dependent response was observed in both fluke recovery and fluke biomass with increasing dose of metacercariae. The mean % parasite recovery of F. gigantica infected groups 1-5 were 26, 23, 26 and 25%, respectively, suggesting a uniform viability of parasite establishment independent of infection dose. At 6 wpi, elevated levels of plasma GLDH were observed in the F. gigantica infected groups compared to the uninfected sheep (p<0.005) whereas the F. hepatica challenged group had four-fold higher levels of GLDH compared to the F. gigantica infected group (p<0.001). Elevated levels of GGT as an indicator of epithelial damage in the bile duct was only seen in the group challenged with F. hepatica at 10 wpi when it rose from below 100 IU/l to approximately 250 IU/l (p<0.0001) whereas no detectable increase in GGT was observed in any of the groups challenged with F. gigantica. The white blood cell response to F. hepatica infection was biphasic with the initial peak at 4 wpi and a second peak at 9 wpi, corresponding to the period of migration of juvenile fluke in the liver and the time when adult flukes are migrating into the bile duct, respectively. This biphasic response was also evident in the changes in the eosinophil counts and serum haemoglobin levels. There was a trend toward higher parasite-specific IgG2 titres in sheep infected with lower worm burdens, suggesting that higher F. gigantica or F. hepatica burdens suppress IgG2 responses. The findings of this study suggest that, in early infection in a permissive host, F. hepatica appears to be more pathogenic than F. gigantica because of its rapid increase in size and the speed of its progression through the migratory phases of its life cycle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号