首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49篇
  免费   2篇
综合类   19篇
水产渔业   1篇
畜牧兽医   31篇
  2007年   2篇
  2006年   3篇
  2003年   4篇
  2002年   1篇
  2001年   4篇
  2000年   5篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1983年   1篇
  1945年   2篇
  1936年   2篇
  1934年   1篇
  1930年   1篇
  1929年   2篇
  1924年   2篇
  1920年   1篇
  1919年   1篇
  1917年   2篇
  1911年   1篇
排序方式: 共有51条查询结果,搜索用时 31 毫秒
1.
Furosemide is a potent loop diuretic used for the prevention of exercise-induced pulmonary hemorrhage in horses. This drug may interfere with the detection of other substances by reducing urinary concentrations, so its use is strictly regulated. The regulation of furosemide in many racing jurisdictions is based on paired limits of urinary SG (<1.010) and serum furosemide concentrations (>100 ng/ml). To validate this regulatory mechanism, a liquid chromatography/mass spectrometry/mass spectrometry method employing a solid-phase extraction procedure and furosemide-d5 as an internal standard was developed. The method was used to determine the pharmacokinetic parameters of furosemide in equine serum samples and its effects on urinary SG after IV administration (250 mg) to 10 horses. Pharmacokinetic analysis showed that serum concentrations of furosemide were well described by a two-compartmental open model. Based on results in this study, it is very unlikely for horses to have serum furosemide concentrations greater than 100 ng/ml or urine SG less than 1.010 at 4 hours after administration (250 mg IV). However, it should be remembered that urine SG is a highly variable measurement in horses, and even without furosemide administration, some horses might naturally have urine SG values less than 1.010.  相似文献   
2.
Lidocaine is a local anaesthetic agent that is widely used in equine medicine. It is also an Association of Racing Commissioners International (ARCI) Class 2 foreign substance that may cause regulators to impose substantial penalties if residues are identified in post race urine samples. Therefore, an analytical/pharmacological database was developed for this drug. Using our abaxial sesamoid local anaesthetic model, the highest no-effect dose (HNED) for the local anaesthetic effect of lidocaine was determined to be 4 mg. Using enzyme-linked immunosorbent assay (ELISA) screening, administration of the HNED of lidocaine to eight horses yielded peak serum and urine concentrations of apparent lidocaine of 0.84 ng/mL at 30 min and 72.8 ng/mL at 60 min after injection, respectively. These concentrations of apparent lidocaine are readily detectable by routine ELISA screening tests (LIDOCAINE ELISA, Neogen, Lexington, KY). ELISA screening does not specifically identify lidocaine or its metabolites, which include 3-hydroxylidocaine, dimethylaniline, 4-hydroxydimethylaniline, monoethylglycinexylidine, 3-hydroxymonoethylglycinexylidine, and glycinexylidine. As 3-hydroxylidocaine is the major metabolite recovered from equine urine, it was synthesized, purified and characterized, and a quantitative mass spectrometric method was developed for 3-hydroxylidocaine as recovered from horse urine. Following subcutaneous (s.c.) injection of the HNED of lidocaine, the concentration of 3-hydroxylidocaine recovered from urine reached a peak of about 315 ng/mL at 1 h after administration. The mean pH of the 1 h post dosing urine samples was 7.7, and there was no apparent effect of pH on the amount of 3-hydroxylidocaine recovered. Within the context of these experiments, the data suggests that recovery of less than 315 ng/mL of 3-hydroxylidocaine from a post race urine sample is unlikely to be associated with a recent local anaesthetic effect of lidocaine. Therefore these data may be of assistance to industry professionals in evaluating the significance of small concentrations of lidocaine or its metabolites in postrace urine samples. It should be noted that the quantitative data are based on analytical methods developed specifically for this study, and that methods used by other laboratories may yield different recoveries of urine 3-hydroxylidocaine.  相似文献   
3.
4.
5.
Rapid flow cytometric analysis of the cell cycle in intact plant tissues   总被引:2,自引:0,他引:2  
Mechanical chopping of plant tissues in the presence of mithramycin released intact nuclei representative of the cells within the tissues. The amount of nuclear DNA in the homogenates of monocotyledonous and dicotyledonous plants was accurately and rapidly determined by flow microfluorometry, and the distribution of nuclei involved in the cell cycle was charted for tissues selected from different physical locations or developmental stages.  相似文献   
6.
7.
REASON FOR PERFORMING STUDY: Trimetoquinol (TMQ) is a potent beta-adrenoceptor agonist bronchodilator used in human medicine but has not been evaluated for potential use as a therapeutic agent for horses with 'heaves'. OBJECTIVES: To assess the pharmacodynamics of TMQ in horses with 'heaves' to determine potential therapeutic effects. METHODS: Increasing doses of TMQ were administered to horses with 'heaves' by i.v. and intratracheal (i.t.) routes. Doses ranged 0.001-0.2 microg/kg bwt i.v. and 0.01-2 microg/kg bwt i.t. Cardiac and airways effects were assessed by measurement of heart rate (HR) and maximal change in pleural pressure (deltaPplmax), respectively. Side effects of sweating, agitation and muscle trembling were scored subjectively. Duration of action to i.v. (0.2 microg/kg bwt) and i.t. (2 microg/kg bwt) TMQ was evaluated over 6 h. RESULTS: Intravenous TMQ was an exceptionally potent cardiac stimulant. Heart rate increased at 0.01 microg/kg bwt, and was still increasing after administration of highest dose, 0.2 microg/kg bwt. Airway bronchodilation, measured as a decrease in deltaPplmax, also commenced at 0.01 microg/kg bwt. By the i.t. route, TMQ was 50-100-fold less potent than by i.v. Side effects included sweating, agitation and muscle trembling. Overall, the onset of HR and bronchodilator effects was rapid, within about 3 min, but effects were over at 2 h. CONCLUSION: When administered i.v. and i.t., TMQ is a highly potent cardiac stimulant and a modest bronchodilator. It may not be an appropriate pharmacological agent by i.v. and i.t. routes for the alleviation of signs in horses with 'heaves'. Further studies of TMQ by oral and aerosol routes are necessary. POTENTIAL RELEVANCE: In horses, TMQ is a fast-acting bronchodilator with a short duration of action. It could be used as a rescue agent during an episode of 'heaves'. The i.v. and i.t. administration of TMQ is associated with side effects, similar to those reported for all other beta-agonists. However, other routes, such as aerosol and oral, may prove useful and safe for the alleviation of bronchoconstriction typical of 'heaves'.  相似文献   
8.
OBJECTIVE: To determine pharmacokinetics of single and multiple doses of rimantadine hydrochloride in horses and to evaluate prophylactic efficacy of rimantadine in influenza virus-infected horses. ANIMALS: 5 clinically normal horses and 8 horses seronegative to influenza A. PROCEDURE: Horses were given rimantadine (7 mg/kg of body weight, i.v., once; 15 mg/kg, p.o., once; 30 mg/kg, p.o., once; and 30 mg/kg, p.o., q 12 h for 4 days) to determine disposition kinetics. Efficacy in induced infections was determined in horses seronegative to influenza virus A2. Rimantadine was administered (30 mg/kg, p.o., q 12 h for 7 days) beginning 12 hours before challenge-exposure to the virus. RESULTS: Estimated mean peak plasma concentration of rimantadine after i.v. administration was 2.0 micrograms/ml, volume of distribution (mean +/- SD) at steady-state (Vdss) was 7.1 +/- 1.7 L/kg, plasma clearance after i.v. administration was 51 +/- 7 ml/min/kg, and beta-phase half-life was 2.0 +/- 0.4 hours. Oral administration of 15 mg of rimantadine/kg yielded peak plasma concentrations of < 50 ng/ml after 3 hours; a single oral administration of 30 mg/kg yielded mean peak plasma concentrations of 500 ng/ml with mean bioavailability (F) of 25%, beta-phase half-life of 2.2 +/- 0.3 hours, and clearance of 340 +/- 255 ml/min/kg. Multiple doses of rimantadine provided steady-state concentrations in plasma with peak and trough concentrations (mean +/- SEM) of 811 +/- 97 and 161 +/- 12 ng/ml, respectively. Rimantadine used prophylactically for induced influenza virus A2 infection was associated with significant decreases in rectal temperature and lung sounds. CONCLUSIONS AND CLINICAL RELEVANCE: Oral administration of rimantadine to horses can safely ameliorate clinical signs of influenza virus infection.  相似文献   
9.
Amitraz, an acaricide used to control ectoparasites in animals has a complex pharmacological activity, including α2-adrenergic agonist action. The purpose of this research was to investigate the possible antinociceptive and/or sedative effect of amitraz in horses. The sedative effect of the intravenous (i.v.) injection of dimethylformamide (DMF, 5 mL, control) or amitraz (0.05, 0.10, 0.15 mg/kg), was investigated on the head ptosis test. The participation of α2-adrenergic receptors in the sedative effect provoked by amitraz was studied by dosing yohimbine (0.12 mg/kg, i.v.). To measure the antinociception, xylazine hydrochloride (1 mg/kg, i.v., positive control) and the same doses of amitraz and DMF were used. A focused radiant light/heat directed onto the fetlock and withers of a horse were used as a noxious stimulus to measure the hoof withdrawal reflex latency (HWRL) and the skin twitch reflex latency (STRL). The three doses of amitraz used (0.05, 0.10 and 0.15 mg/kg) provoked a dose-dependent relaxation of the cervical muscles. The experiments with amitraz and xylazine on the HWRL showed that after i.v. administration of all doses of amitraz there was a significant increase of HWRL up to 150 min after the injections. Additionally, there was a significant difference between control (DMF) and positive control (xylazine) values up to 30 min after drug injection. On the other hand, the experiments on the STRL show that after administration of amitraz at the dose of 0.15 mg/kg, a significant increase in STRL was observed when compared with the control group. This effect lasted up to 120 min after injection. However, no significant antinociceptive effect was observed with the 0.05 and 0.10 mg/kg doses of amitraz or at the 1.0 mg/kg dose of xylazine.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号