首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   1篇
  1篇
农作物   1篇
水产渔业   13篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
Superintensive shrimp culture in zero‐exchange, biofloc‐dominated production systems is more biosecure and sustainable than traditional shrimp farming practices. However, successful application of this technology depends upon optimizing dietary formulations, controlling Vibrio outbreaks, and managing accumulative changes in water quality and composition. A 49‐d study investigated the effect of two commercial feeds of differing protein content and an indoor limited‐exchange, biofloc‐dominated culture environment on Litopenaeus vannamei performance and tissue composition, water quality and ionic composition, and Vibrio dynamics. Juveniles (5.3 g) were stocked at 457/m3 into four 40 m3 shallow raceways containing biofloc‐dominated water and fed one of two commercial feeds with differing protein content, 35 or 40%. Shrimp performance, Vibrio populations, and changes in shrimp and culture water composition were monitored. There were no significant differences (P > 0.05) in shrimp performance (survival, weight, growth, specific growth rate, total biomass, yield, feed conversion ratio, and protein efficiency ratio) or proximate composition between feed types. The 40% protein feed resulted in higher culture water nitrate and phosphate concentrations, alkalinity consumption and bicarbonate use, and higher phytoplankton density. The presence of Vibrio, specifically Vibrio parahaemolyticus, reduced shrimp survival. This survival decrease corresponded with increased culture water Vibrio concentrations. Culture water K+ and Mg2+ increased significantly (P < 0.05), and Sr2+, Br?, and Cl? decreased significantly (P < 0.05) over time. While Cu2+ and Zn2+ did increase in shrimp tissue, no heavy metals accumulated to problematic levels in culture water or shrimp tissue. These results demonstrate the importance of monitoring Vibrio populations and ionic composition in limited‐exchange shrimp culture systems.  相似文献   
2.
Many fish culturists are interested in applying copper sulfate pentahydrate (CSP) to channel catfish, Ictalurus punctatus, nursery ponds as a prophylactic treatment for trematode infection and proliferative gill disease by killing snails and Dero sp., respectively, before stocking fry. However, copper is an algaecide and may adversely affect phytoplankton and zooplankton populations. We evaluated the effects of prophylactic use of copper sulfate in catfish nursery ponds on water quality and phytoplankton and zooplankton populations. In 2006, treatments of 0 mg/L CSP, 3 mg/L CSP (0.77 mg/L Cu), and 6 mg/L CSP (1.54 mg/L Cu) were randomly assigned to 0.04‐ha ponds. In 2007, only treatments of 0 and 3 mg/L CSP were randomly assigned to the 16 ponds. Ponds treated with CSP had significantly higher pH and significantly lower total ammonia concentrations. Treatment of both CSP rates increased total algal concentrations but reduced desirable zooplankton groups for catfish culture. CSP has been shown to be effective in reducing snail populations at the rate used in this study. CSP treatment also appears to be beneficial to the algal bloom, shifting the algal population to green algae and increasing total algal biomass within 1 wk after CSP treatment. Although zooplankton populations were adversely affected, populations of important zooplankton to catfish fry began rebounding 6–12 d after CSP treatment. Therefore, if CSP is used to treat catfish fry ponds of similar water composition used in this study, fry should not be stocked for about 2 wk after CSP application to allow time for the desirable zooplankton densities to begin increasing.  相似文献   
3.
Increased demand has pushed extensive aquaculture towards intensively operated production systems, commonly resulting in eutrophic conditions and cyanobacterial blooms. This review summarizes those cyanobacterial secondary metabolites that can cause undesirable tastes and odors (odorous metabolites) or are biochemically active (bioactive metabolites) in marine and freshwater, extensive and intensive aquaculture systems. For the scope of this paper, biochemically active metabolites include (1) toxins that can cause mortality in aquaculture organisms or have the potential to harm consumers via accumulation in the product (hepatotoxins, cytotoxins, neurotoxins, dermatoxins, and brine shrimp/molluskal toxins), (2) metabolites that may degrade the nutritional status of aquaculture species (inhibitors of proteases and grazer deterrents) or (3) metabolites that have the potential to negatively affect the general health of aquaculture species or aquaculture laborers (dermatoxins, irritant toxins, hepatotoxins, cytotoxins). Suggestions are made as to future management practices in intensive and extensive aquaculture and the potential exposure pathways to aquaculture species and human consumers are identified.  相似文献   
4.
Using different sources of nitrogen as fertilizers in nursery ponds may affect water quality and plankton responses. We evaluated water quality variables and plankton population responses when using different nitrogen sources for catfish nursery pond fertilization. We compared calcium nitrate (12% N), sodium nitrite (20% N), ammonium chloride (26% N), ammonium nitrate (34% N) and urea (45% N) in 190‐L microcosms at equimolar nitrogen application rates. Sodium nitrite‐fertilized microcosms had higher nitrite and nitrate levels during the first week; no other differences in the water quality were detected among fertilizer types (P>0.05). No differences in green algae, diatoms or cyanobacteria were detected among treatments; desirable zooplankton for catfish culture was increased in urea‐fertilized microcosms. Based on these results, any form of nitrogen used for pond fertilization should perform similarly without causing substantial water quality deterioration. Ammonium nitrate and urea contain a higher percentage of nitrogen, requiring less volume to achieve dosing levels. If both urea and ammonium nitrate are available, we recommend using the one with the least cost per unit of nitrogen. If both types of fertilizer have an equal cost per unit of nitrogen, we recommend using urea because of the potential advantage of increasing desirable zooplankton concentrations.  相似文献   
5.
A study was conducted to evaluate effects of various carotenoids on skin and fillet coloration and fillet carotenoid concentration in channel catfish, Ictalurus punctatus. For 12 wk, juvenile catfish were fed one of six experimental diets containing no supplemental carotenoid or 100 mg/kg of one of following carotenoid additions: β‐carotene (BCA), lutein (LUT), zeaxanthin (ZEA), canthaxanthin (CAN), and astaxanthin (AST). Visual yellow color intensity score was highest for fish fed LUT, followed by ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Skin and tissue Commission Internationale de I’Eclairage yellowness value was the highest in fish fed LUT, followed by fish fed ZEA, AST, and CAN, and lowest for fish fed basal and BCA diets. Fish accumulated the supplemental carotenoids in muscle tissues, but concentrations of different carotenoids in the tissue varied greatly. Approximately 30% of the LUT added was converted to echineone; no conversion was observed among other supplemental carotenoids. Results from the present study indicate that channel catfish can accumulate yellow pigments LUT and ZEA and red or pink pigments CAN and AST in the flesh, resulting in yellow coloration. The yellow pigment BCA does not appear to deposit in skin or flesh at levels sufficient to alter the coloration.  相似文献   
6.
Abstract.— Many aquaculture studies are conducted in relatively small research ponds and the results are then extrapolated to larger commercial ponds. Implicit in this research is the assumption that there is no relationship between pond size and phytoplankton composition. Study objectives were to assess phytoplankton composition and biomass by several methods in 17 channel catfish Ictalurus punctatus ponds at the Aqua‐culture Research Station, Louisiana Agricultural Experiment Station in Baton Rouge, Louisiana, USA. Pond size ranged from 0.04–0.60 ha. Sampling occurred weekly from 10 September – 1 October 1997. Water temperatures coincided with a transition from summer to fall‐winter conditions. Biomass was assessed by cell counts and quantification of photopigments. Concentrations of dissolved off‐flavor compounds (2‐methylisoborneol and geosmin) were assessed by gas chromatography/mass spectroscopy of water column samples. Cell count data showed differences in dominant species, biovolume, and diagnostic pigment signatures among ponds. The smaller ponds had more diverse phytoplankton composition compared to the larger ponds, whereas chlorophyll levels were nearly an order of magnitude lower in the smaller ponds. Ultraplanktonic (2–20 μm) unicellular cyanobacteria dominated the numerical counts on most sampling dates; however, biovolume transformations of cell count data reduced the dominance of this component relative to cryptophytes, diatoms, and filamentous cyanobacteria. Pigment and microscopic analyses were well correlated. Unialgal isolates of dominant taxa from these samples indicated the presence of at least five genera of off‐flavor producers in these ponds; these taxa included Anabaena, Aphanizomenon, Pseudanabaena, as well as two species of Oscillatoria. Care in extrapolating results from smaller‐sized research ponds to larger commercial ponds is warranted, as is the potential for taxa other than Oscillatoria and Anabaena in forming off‐flavor compounds.  相似文献   
7.
8.
Aquatic microbes produce diverse secondary metabolites with interesting biological activities. Cytotoxic metabolites have the potential to become lead compounds or drugs for cancer treatment. Many cytotoxic compounds, however, show undesirable toxicity at higher concentrations. Such undesirable activity may be reduced or eliminated by using lower doses of the cytotoxic compound in combination with another compound that modulates its activity. Here, we have examined the cytotoxicity of four microbial metabolites [ethyl N-(2-phenethyl) carbamate (NP-1), Euglenophycin, Anabaenopeptin, and Glycolipid 652] using three in vitro cell lines [human breast cancer cells (MCF-7), mouse neuroblastoma cells (N2a), and rat pituitary epithelial cells (GH4C1)]. The compounds showed variable cytotoxicity, with Euglenophycin displaying specificity for N2a cells. We have also examined the modulatory power of NP-1 on the cytotoxicity of the other three compounds and found that at a permissible concentration (125 µg/mL), NP-1 sensitized N2a and MCF-7 cells to Euglenophycin and Glycolipid 652 induced cytotoxicity.  相似文献   
9.
The effects of different densities of caged Nile tilapia, Oreochromis niloticus, on water quality, phytoplankton populations, prawn, and total pond production were evaluated in freshwater prawn, Macrobrachium rosenbergii, production ponds. The experiment consisted of three treatments with three 0.04‐ha replicates each. All ponds were stocked with graded, nursed juvenile prawn (0.9 ± 0.6 g) at 69,000/ha. Control (CTL) ponds contained only prawns. Low‐density polyculture (LDP) ponds also contained two cages (1 m3; 100 fish/cage) of monosex male tilapia (115.6 ± 22 g), and high‐density polyculture (HDP) ponds had four cages. Total culture period was 106 d for tilapia and 114 d for prawn. Overall mean afternoon pH level was significantly lower (P ≤ 0.05) in polyculture ponds than in CTL ponds but did not differ (P > 0.05) between LDP and HDP. Phytoplankton biovolume was reduced in polyculture treatments. Tilapia in the LDP treatment had significantly higher (P ≤ 0.05) harvest weights than in the HDP treatment. Prawn weights were higher (P ≤ 0.05) in polyculture than prawn monoculture. These data indicate that a caged tilapia/freshwater prawn polyculture system may provide pH control while maximizing pond resources in temperate areas.  相似文献   
10.
Bivalves have exceptional potential as sentinel organisms because their sedentary benthic lifestyle and ability to pump large volumes of water in short periods of time results in bioaccumulation of pollutants and toxins present in the water column. Scope for Growth (SFG) is an instantaneous measure of production that ranges from maximum positive values under optimal conditions to negative valves when the organism is stressed and utilizing its body reserves for maintenance. We determined baseline SFG for the Texas bay scallop Argopecten irradians amplicostatus so that this species might be used to determine sublethal effects of toxins, contaminants, or other environmental stressors in light of recent harmful algal bloom events in the Gulf of Mexico. We also quantified the effects of different diets (phytoplankton, zooplankton, mixed phytoplankton/zooplankton) on Texas bay scallop SFG. SFG of starved animals was negative, indicating that body reserves were used for maintenance. SFG varied significantly (P < 0.001) by diet, with rotifers yielding the highest value (mean = 14.88 Joules hr?1g dry weight, SE = 0.72). We determined that the Texas bay scallop has presently unrecognized potential as sentinel organisms to define effects of various environmental and anthropogenic perturbations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号