首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   3篇
林业   11篇
农学   4篇
  14篇
综合类   7篇
农作物   3篇
水产渔业   5篇
畜牧兽医   38篇
园艺   3篇
植物保护   2篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   2篇
  2019年   3篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   1篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   5篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   5篇
  2002年   5篇
  2001年   1篇
  2000年   4篇
  1999年   1篇
  1998年   2篇
  1997年   1篇
  1992年   1篇
  1991年   1篇
  1989年   2篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
排序方式: 共有87条查询结果,搜索用时 15 毫秒
1.
Abundance indices (AIs) provide information on population abundance and trends over time, while AI variance (AIV) provides information on reliability or quality of the AI. AIV is an important output from surveys and is commonly used in formal assessments of survey quality, in survey comparison studies, and in stock assessments. However, uncertainty in AIV estimates is poorly understood and studies on the precision and bias in survey AIV estimates are lacking. Typically, AIV estimates are “design based” and are derived from sampling theory under some aspect of randomized samples. Inference on population density in these cases can be confounded by unaccounted process errors such as those due to variable sampling efficiency (q). Here, we simulated fish distribution and surveys to assess the effect of q and variance in q on design‐based estimates of AIV. Simulation results show that the bias and precision of AIV depend on the mean q and variance in q. We conclude that to fully evaluate the reliability of AI, both observation error and variability in q must be accounted for when estimating AIV. A decrease in mean q and an increase in the variance in q results in increased bias and decreased precision in survey AIV estimates. These effects are likely small in surveys with mean q ≥ 1. However, for surveys where q ≤ 0.5, these effects can be large. Regardless of the survey type, AIV estimates can be improved with knowledge of q and variance in q.  相似文献   
2.
Trees exposed to elevated CO2 partial pressure ([CO2]) generally show increased rates of photosynthesis and growth, but effects on leaf respiration are more variable. The causes of this variable response are unresolved. We grew 12-year-old sweetgum trees (Liquidambar styraciflua L.) in a Free-Air CO2 Enrichment (FACE) facility in ambient [CO2] (37/44 Pa daytime/nighttime) and elevated [CO2] (57/65 Pa daytime/nighttime) in native soil at Oak Ridge National Environmental Research Park. Nighttime respiration (R(N)) was measured on leaves in the upper and lower canopy in the second (1999) and third (2000) growing seasons of CO2 fumigation. Leaf respiration in the light (R(L)) was estimated by the technique of Brooks and Farquhar (1985) in the upper canopy during the third growing season. There were no significant short-term effects of elevated [CO2] on R(N) or long-term effects on R(N) or R(L), when expressed on an area, mass or nitrogen (N) basis. Upper-canopy leaves had 54% higher R(N) (area basis) than lower-canopy leaves, but this relationship was unaffected by CO2 growth treatment. In August 2000, R(L) was about 40% of R(N) in the upper canopy. Elevated [CO(2)] significantly increased the number of leaf mitochondria (62%), leaf mass per unit area (LMA; 9%), and leaf starch (31%) compared with leaves in ambient [CO(2)]. Upper-canopy leaves had a significantly higher number of mitochondria (73%), N (53%), LMA (38%), sugar (117%) and starch (23%) than lower-canopy leaves. Growth in elevated [CO2] did not affect the relationships (i.e., intercept and slope) between R(N) and the measured leaf characteristics. Although no factor explained more than 45% of the variation in R(N), leaf N and LMA were the best predictors for R(N). Therefore, the response of RN to CO2 treatment and canopy position was largely dependent on the magnitude of the effect of elevated [CO2] or canopy position on these characteristics. Because elevated [CO2] had little or no effect on N or LMA, there was no effect on R(N). Canopy position had large effects on these leaf characteristics, however, such that upper-canopy leaves exhibited higher R(N) than lower-canopy leaves. We conclude that elevated [CO2] does not directly impact leaf respiration in sweetgum and that barring changes in leaf nitrogen or leaf chemical composition, long-term effects of elevated [CO2] on respiration in this species will be minimal.  相似文献   
3.
In 2007, an extreme drought and acute heat wave impacted ecosystems across the southeastern USA, including a 19-year-old Liquidambar styraciflua L. (sweetgum) tree plantation exposed to long-term elevated (E(CO(2))) or ambient (A(CO(2))) CO(2) treatments. Stem sap velocities were analyzed to assess plant response to potential interactions between CO(2) and these weather extremes. Canopy conductance and net carbon assimilation (A(net)) were modeled based on patterns of sap velocity to estimate indirect impacts of observed reductions in transpiration under E(CO(2)) on premature leaf senescence. Elevated CO(2) reduced sap flow by 28% during early summer, and by up to 45% late in the drought during record-setting temperatures. Modeled canopy conductance declined more rapidly in E(CO(2)) plots during this period, thereby directly reducing carbon gain at a greater rate than in A(CO(2)) plots. Indeed, pre-drought canopy A(net) was similar across treatment plots, but declined to ~40% less than A(net) in A(CO(2)) as the drought progressed, likely leading to negative net carbon balance. Consequently, premature leaf senescence and abscission increased rapidly during this period, and was 30% greater for E(CO(2)). While E(CO(2)) can reduce leaf-level water use under droughty conditions, acute drought may induce excessive stomatal closure that could offset benefits of E(CO(2)) to temperate forest species during extreme weather events.  相似文献   
4.

Purpose

In a 6-year study, we investigated the effectiveness of blind inlets as a conservation practice in reducing pesticide losses compared to tile risers from two closed farmed depressional areas (potholes) in the US Midwest under a 4-year cropping rotation.

Materials and methods

In two adjacent potholes within the same farm and having similar soils, a conventional tile riser and blind inlet were installed. Each draining practice could be operated independent of each other in order to drain and monitor each depression with either practice. Sampling events (runoff events) were collected from the potholes from 2008 to 2013 using autosamplers. The samples were analyzed for atrazine, metolachlor, 2,4-D, glyphosate, and deethylatrazine.

Results and discussion

The results of this study demonstrated that the blind inlet reduced analyzed pesticide losses; however, the level of reduction was compound dependent: atrazine (57 %), 2,4-D (58 %), metolachlor (53 %), and glyphosate (11 %).

Conclusions

Results from this study corroborate previous research findings that blind inlets are an effective conservation practice to reduce discharge and pollutants, including pesticides from farmed pothole surface runoff in the US Midwest.
  相似文献   
5.
Zygomatic salivary gland disease is not commonly reported in dogs and there is a paucity of literature reporting salivary gland disease secondary to infarction in dogs. A 9-year-old German wirehaired pointer presented with left eye exophthalmos, 3rd eyelid elevation, negative retropulsion, and pain upon opening of the mouth. Computed tomography revealed a mass extending from the left zygomatic salivary gland, consistent with a sialocele. A left-sided zygomatic sialoadenectomy was performed successfully. Histopathologic diagnosis concluded zygomatic salivary gland infarction. The dog had no signs of recurrence 20 mo after surgery.Key clinical message:To the authors’ knowledge, this is the first case report with long-term outcome of a zygomatic sialocele secondary to salivary gland infarction in a dog treated by zygomatic sialoadenectomy via zygomatic osteotomy.  相似文献   
6.
The changes in volume, weight and the histomorphological changes of the tertiary follicles of ewes were studied after protracted irradiation with 4.8 Gy in the anoestrous period by the morphometric and qualitative histological methods. The trial was performed in May with 21 ewes of the Slovak Merino breed, divided into three groups. The first group (five ewes) was control. The second and third groups (each containing eight ewes) were exposed to gamma-rays for five days, the total dose being 4.8 Gy. Within ten days after the treatment, all the irradiated and control ewes were given Ampicillin Spofa per os at a dose of 250 mg per head/day and Roboran Spofa at a dose of 10 g per head/day. The animals were killed by bleeding on the fifth day of irradiation and on the tenth day after the end of the treatment. After killing, the volume and weight of the ovaries were determined and a common histological method was used to cut these ovaries into 7 microns slices in series 70 microns apart. The slices were stained with haematoxylin-eosine and were evaluated by means of light microscopy. After irradiation the weight of the ovaries was found to decrease significantly; however, ovary volume remained unchanged. The atretic and non-atretic tertiary follicles were subjected to qualitative histological differentiation after Marion et al. (1968) and the number of non-atretic follicles was found to have decreased significantly in the irradiated ewes. The late type of atresia contributes most significantly to an increase in the proportion of atretic tertiary follicles. The administration of vitamins after irradiation reduced the occurrence of atretic changes.  相似文献   
7.
8.
Community and ecosystem changes are happening in the pristine boreal forest ecosystem of the Yukon for 2 reasons. First, climate change is affecting the abiotic environment (temperature, rainfall and growing season) and driving changes in plant productivity and predator–prey interactions. Second, simultaneously change is occurring because of mammal species reintroductions and rewilding. The key ecological question is the impact these faunal changes will have on trophic dynamics. Primary productivity in the boreal forest is increasing because of climatic warming, but plant species composition is unlikely to change significantly during the next 50–100 years. The 9–10‐year population cycle of snowshoe hares will persist but could be reduced in amplitude if winter weather increases predator hunting efficiency. Small rodents have increased in abundance because of increased vegetation growth. Arctic ground squirrels have disappeared from the forest because of increased predator hunting efficiency associated with shrub growth. Reintroductions have occurred for 2 reasons: human reintroductions of large ungulates and natural recolonization of mammals and birds extending their geographic ranges. The deliberate rewilding of wood bison (Bison bison) and elk (Cervus canadensis) has changed the trophic structure of this boreal ecosystem very little. The natural range expansion of mountain lions (Puma concolor), mule deer (Odocoileus hemionus) and American marten (Martes americana) should have few ecosystem effects. Understanding potential changes will require long‐term monitoring studies and experiments on a scale we rarely deem possible. Ecosystems affected by climate change, species reintroductions and human alteration of habitats cannot remain stable and changes will be critically dependent on food web interactions.  相似文献   
9.
Long‐term monitoring is critical to determine the stability and sustainability of wildlife populations, and if change has occurred, why. We have followed population density changes in the small mammal community in the boreal forest of the southern Yukon for 46 years with density estimates by live trapping on 3–5 unmanipulated grids in spring and autumn. This community consists of 10 species and was responsible for 9% of the energy flow in the herbivore component of this ecosystem from 1986 to 1996, but this increased to 38% from 2003 to 2014. Small mammals, although small in size, are large in the transfer of energy from plants to predators and decomposers. Four species form the bulk of the biomass. There was a shift in the dominant species from the 1970s to the 2000s, with Myodes rutilus increasing in relative abundance by 22% and Peromyscus maniculatus decreasing by 22%. From 2007 to 2018, Myodes comprised 63% of the catch, Peromyscus 20%, and Microtus species 17%. Possible causes of these changes involve climate change, which is increasing primary production in this boreal forest, and an associated increase in the abundance of 3 rodent predators, marten (Martes americana), ermine (Mustela ermine) and coyotes (Canis latrans). Following and understanding these and potential future changes will require long‐term monitoring studies on a large scale to measure metapopulation dynamics. The small mammal community in northern Canada is being affected by climate change and cannot remain stable. Changes will be critically dependent on food–web interactions that are species‐specific.  相似文献   
10.
Neurosecretion, PAS-positive mucopolysaccharides and the Nissl substance were studied in the neurons of the rostral, medial and caudal hypothalamus of continuously irradiated ewes. The study was performed on 21 ewes of the Slovak Merino breed at the live weight of 34 kg. The animals were in the period of physiological anoestrus and their age was two to three years. The first group of six ewes was the control. The second group included 15 sheep irradiated with a total dose of 6.7 Gy (700 R) for seven days. Co60 was used as the source of irradiation. The animals of this group were killed seven days from treatment. The ewes in the third group were left for the study of mortality. The brains were perfused with 2% buffered paraformaldehyde immediately after the bleeding of the sheep; then the brains were removed from skulls and fixed in buffered picroformol. Paraffin slices were stained with haematoxylin-eosine, aldehyde-fuchsine and alcian blue for neurosecretion, with PAS-reaction for mucopolysaccharides and with cresyl violet for the Nissl substance. As found, the irradiation of the whole body inhibits the activity of neurosecretory cells in rostral and medial hypothalamus, thus reducing neurosecretion. These regions also show a reduced activity of PAS reaction used for the demonstration of mucopolysaccharides. The observed changes also included damage of the endothelium of blood vessels with the occurrence of erythrocyte extravasates and with haemorrhages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号