首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   9篇
  国内免费   3篇
水产渔业   22篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   5篇
  2014年   1篇
  2013年   5篇
  2012年   1篇
  2011年   5篇
  2010年   2篇
排序方式: 共有22条查询结果,搜索用时 13 毫秒
1.
昆山地区典型池塘虾蟹混养模式对水环境的影响   总被引:1,自引:0,他引:1  
虾蟹混养是昆山地区主要的池塘养殖模式。为深入研究虾蟹混养式养殖尾水对水环境的影响,对典型养殖区锦溪镇南前村的600×667 m~2虾蟹养殖基地的水源、池水和尾水在2012—2014年养殖期间的水质指标pH、亚硝酸盐、氨氮、总氮、总磷、COD监测。结果表明:在不同季节水源、池水和尾水的pH变化较大,变动范围在7.08~9.26之间;亚硝酸盐和氨氮浓度均处于很低的水平,优于地表水环境标准Ⅲ类水质标准,养殖尾水的氨氮浓度通常较水源和池水更低;除总氮和COD在2014春季高于水源外,其余年份各季节总氮、总磷和COD均接近或低于水源水指标值。除COD外,各项水质指标均符合太湖流域池塘养殖水排放一级标准,且呈现为低于或接近养殖用水源水的水质指标,可以认为池塘虾蟹混养模式对外部水环境影响很小。尾水排放前应加强对COD的控制。  相似文献   
2.
<正>大闸蟹是风靡全国的特色优质水产品,深受大众喜爱,是秋季餐桌上不可或缺的绝顶美味。如何选择质量上乘的大闸蟹,不仅有许多成型攻略,也有很多积累的实战经验,前有"若非阳澄湖蟹好、此生何必住苏州"的地域倾向,后有"好蟹不问出处"的豪迈选择,然而,"大"一直是大闸蟹选择的首要标准。如何养出规格更大的大闸蟹,优质的苗种、良好的养殖环境、高超的养殖管理技术、恰当的饲料选择都是大规格河蟹养殖的重要环节,想要取得突破,都实为不易。  相似文献   
3.
虾夷扇贝动态能量收支模型参数的测定   总被引:1,自引:0,他引:1  
本研究以虾夷扇贝为实验生物,介绍了动态能量收支(dynamic energy budget,DEB)模型5个关键基本参数的测定及计算方法,分析了方法的利弊及注意事项,为贝类DEB模型参数的准确获取提供参考方法。采用壳长与软体部湿重回归法计算虾夷扇贝的形状系数δm;采用静水法测定不同温度条件下虾夷扇贝的呼吸耗氧率,计算阿伦纽斯温度TA参数;采用饥饿法测定、计算单位时间单位体积维持生命所需的能量[]、形成单位体积结构物质所需的能量[EG]和单位体积最大储存能量[EM]3个参数。室内饥饿实验持续60 d,直至呼吸耗氧率及软体部干重基本保持恒定。结果显示,壳长(SL)与软体部湿重(WW)的回归关系式为WW=0.0118SL3.4511(R2=0.9365),根据公式V=(δm L)3,对软体部湿重的立方根和壳长进行线性回归,所得的斜率即为形状系数δm值(δm=0.32);获得不同规格的虾夷扇贝耗氧率与水温(热力学温度,K)倒数的线性回归关系,线性回归方程斜率的绝对值为阿伦纽斯温度TA,平均为(4160±767)K。饥饿实验结束时,软体部干重和呼吸耗氧率分别降低了56%和81%。虾夷扇贝的耗氧率稳定在0.17 mg/(ind·h),经计算获得[]=25.9 J/(cm~3·d);饥饿持续30天之后,虾夷扇贝软体部干重基本维持在(0.25±0.01)g,经计算获得[EG]=3160 J/cm~3,[EM]=2030 J/cm~3。动态DEB理论是基于能量代谢的物理、化学特性而建立的,体现了生物能量代谢的普遍性规律,能够反映摄食获取能量在不同发育生长阶段的能量分配情况。但是,DEB模型参数的测定及计算比较复杂。基本参数的准确获取将影响其他参数以及模型的准确性。本研究为虾夷扇贝DEB模型的构建奠定基础。  相似文献   
4.
正多营养层次综合养殖是近年来出现的一种可持续发展的海水养殖理念,由两名科研人员Chopin和Taylor将多营养层次种类的养殖与综合养殖合并提出,并在加拿大进行了实践。多营养层次综合养殖是指在同一养殖空间内,处于不同营养层级的生物共同组成一个综合的系统,通过系统运行,可以充分利用养殖环境资源,降低营养损耗及潜在的经济损耗,从而在根本上实现养殖空间、养殖容纳量的提升和养殖产出的提高,同时达到养殖生产低耗、低污染,健康  相似文献   
5.
通过实验室可控条件,以桑沟湾(Sanggou Bay)养殖海带(Sacharina japonica)为研究对象,探讨养殖海带碎屑降解过程中营养盐释放速率及对底质、溶解氧的影响.实验设置2个底质条件(加底泥,无底泥)、2个溶氧条件(好氧,厌氧),各处理组设3个平行,实验持续27 d.结果显示,(1)加入底泥,可以促进海带碎屑的降解.实验结束时,加入底泥组无机氮(DIN)、总氮(TN)、活性磷酸盐(DIP)、总磷(TP)的平均释放速率分别为1.234、1.802、0.028、0.033 μmo1/(g.d),显著高于未加底泥组的0.039、1.476、0.005、0.010 μmo1/(g·d).而未加底泥组的可溶性有机氮(DON)释放速率为1.437 μmo1/(g·d),显著高于底泥组的0.568 μmo1/(g.d).(2)厌氧条件有利于海带碎屑中P的降解释放,释放的TP中以可溶性有机磷(DOP)为主.TP、DIP、DOP的降解速率显著高于非厌氧条件.但是,厌氧条件下无机氮释放速率为0.097 μmo1/(g·d),仅为好氧条件下无机氮的8%,而总氮为好氧条件下的71%.(3)底泥的加入显著提高了水体的N:P,达到207.83±301.37,厌氧状态使水体N:P降低到9.38±6.55,都较大的偏离对照组的16.82±1.26,远远偏离经典Redfield值(16∶1).整个实验说明养殖海带降解过程受底质、溶氧条件影响,同时,大量海带碎屑腐烂降解,将会对养殖系统的营养盐浓度及结构产生影响.  相似文献   
6.
通过室内实验与海区现场实验相结合的方法,研究了10℃、18℃及20℃下3种不同规格(壳高:S:2.5cm;M:5.5cm;B:6.8cm)的长牡蛎耗氧率、排氨率及钙化率的日变化。实验结果表明,长牡蛎的代谢有一定节律性,其中,呼吸表现为昼夜节律,在水温10℃时为夜高昼低,夜间的耗氧率比白天平均高0.07mg/ind.h;水温20℃时,室内实验的呼吸率无明显节律。而现场实验则表现为昼高夜低,白天比夜间高0.08mg/ind.h。排氨率与耗氧率变化不一致,白天和夜间分别有相近的变化趋势,可能是受到潮汐节律的影响;长牡蛎的钙化则表现出复杂的变化,不同时间段间有显著差异(P<0.05),但没有明显的节律性。在进行牡蛎生理实验时,要避免取短时间的生理指标计算其代谢水平,应选择不同时段进行重复实验。  相似文献   
7.
利用水下饱和脉冲荧光仪(Diving PAM)对桑沟湾6种常见海藻的光合荧光特性进行了原位测定.结果显示:表征植物PSⅡ潜在光能转化效率的指标:Fv/Fm在孔石莼(Ulva pertusa)、羽藻(Bryopsis plumosa)、蜈蚣藻(Grateloupia filicina)、扇形拟伊藻(Ahnfeltiops...  相似文献   
8.
正一、田块情况该稻田综合种养田块面积26亩,共3个田块,分别为6亩、8亩、12亩。田块建设主要为夯实四周田埂,埂宽2.5米左右。在稻田内距田埂0.9米左右沿埂四周,开挖上部宽度5米、下部宽度4.5米、深0.5米的蟹沟。严格进排水分离,明渠进水,水泥闸板控制,暗管排水。微孔增氧设施功率配置0.26千瓦/  相似文献   
9.
温度、饵料质量对不同规格刺参摄食率、吸收效率的影响   总被引:1,自引:1,他引:0  
为了解刺参摄食的生理生态学特性,本实验在室内模拟研究了不同体质量刺参[A(4.77±0.95)g、B(15.12±1.14)g、C(34.77±7.95)g、D(78.13±4.99)g]的有机物摄食率、吸收效率分别对饵料质量[Ⅰ(100%海泥)、Ⅱ(88%海泥+12%海带粉)、Ⅲ(76%海泥+24%海带粉)、Ⅳ(64%海泥+36%海带粉)]及温度[(5.1±0.4)、(10.9±0.7)、(12.5±0.6)、(14.2±0.7)和(16.1±0.6)℃]变化的响应。结果表明,摄食率(OIR)与饵料质量(OC)回归方程为OIR=a×OC/(OC+b),其中a、b分别为最大摄食率与半饱和常数;双因素方差分析结果显示,饵料质量、体质量对刺参摄食影响极显著,而二者交互作用对其影响不显著。与温度(T)的关系为OIR=c×T2+d×T+e,c=-(0.007 5~0.016 4)、d=0.298~0.769、e=-(0.742~1.977);水温、体质量对刺参摄食均有显著影响;而其交互作用对摄食率的影响极显著,对吸收效率则不显著。饵料质量、温度和初始体质量(WW)组合双因子与摄食率的关系分别为OIR=12.55×WW-0.361+7.92×OC/(OC+4.373)-4.70,OIR=2.2×WW-0.384+0.033×WW-0.384×T2+0.077×T。协方差分析表明,其相关系数呈极显著水平。本研究量化了刺参摄食率与饵料质量、水温、体质量之间的相关关系,并初步掌握了有机物摄食率的变化规律。  相似文献   
10.
地理信息系统(Geographical Information System, GIS)是一项综合性的技术,它涉及到地理学、测绘学、计算机科学与技术等学科。近年来,随着计算机技术的快速发展,地理信息系统的应用也得到了有力的推动。在渔业领域,地理信息系统被广泛的应用于海洋渔业的渔业制图、鱼类栖息地评价、渔业资源分布及其与环境的关系、养殖选点、渔业管理等方面。在内陆地区,地理信息系统的应用主要在系统评价,池塘养殖适应性评价。然而,直接将地理信息系统应用与区域内养殖池塘的管理尚未见报道。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号