首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
林业   1篇
农学   6篇
农作物   2篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  1986年   1篇
排序方式: 共有9条查询结果,搜索用时 234 毫秒
1
1.
2.
Host plant resistance is the preferred management strategy for Asian rice gall midge (Orseolia oryzae), a serious pest in many rice-growing countries. Identification of simple sequence repeat (SSR) markers that are tightly linked to pest resistance genes can accelerate development of gene pyramids for durable/multiple resistance. Based on conventional and molecular allelism tests, we report herein that rice genotype Aganni possesses Gm8 gene, conferring hypersensitive independent (HR– type) resistance to gall midge biotypes GMB1, GMB2, GMB3, GMB4, and GMB4M. The gene Gm8 was mapped to chromosome 8 within a 400-kbp region, and the SSR markers RM22685 and RM22709 flank the gene closely. Using these closely linked flanking markers, nine other gall midge-resistant genotypes were identified as carrying the same gene Gm8. Through marker-assisted selection, Gm8 has been introgressed into an elite bacterial blight-resistant cultivar, Improved Samba-Mahsuri (IS).  相似文献   
3.
The rice brown planthopper (BPH) Nilaparvata lugens (Stål) is one of the major pests of rice across Asia. Host-plant resistance is the most ecologically acceptable means to manage this pest. A rice breeding line RP2068-18-3-5 (RP2068) derived from the land race Velluthacheera is reported to be resistant to BPH populations across India. We identified a new R gene [Bph33(t)] in this line using advanced generation RILs derived from TN1 × RP2068 cross through phenotyping at two locations and linkage analysis with 99 polymorphic SSR markers. QTL analysis through IciMapping identified at least two major QTL on chromosome 1 influencing seedling damage score in seed box screening, honey dew excretion by adults and nymphal survival. Since no BPH R gene has been reported on chromosome 1, we designate this locus as a new gene Bph33(t) which accounted for over 20% of phenotypic variance. Scanning the region for candidate gene suggested two likely candidates a leucine rich repeat (LRR) gene and a heat shock protein (HSP) coding gene. Expression profiling of the two genes in the two contrasting parents and RILs showed induction of the HSP gene (LOC_Os01g42190.1) at 6 h after infestation while LRR gene did not show such induction. It is likely that the HSP represented Bph33(t).  相似文献   
4.
Gall midge is the third most destructive insect pests of rice after stem borers and planthoppers. Host plant resistance has been recognized as the most effective and economic, means for gall midge management. With the characterization of a new gall midge biotype (GMB) 4M, unique feature of gall midge resistance in the breeding line CR57-MR1523 was highlighted. Multi-location evaluation of F3 families derived from the cross TN1 × CR57-MR1523 against different gall midge biotypes helped to identify a new dominant gene conferring resistance against GMB4. This gene has been designated as Gm11t. Though CR57-MR1523 has been extensively used in breeding gall midge resistant rice varieties like Suraksha, neither the genetics of resistance nor chromosomal location of the resistance gene(s) is known. In the present study we have tagged and mapped the new gall midge resistance gene, Gm11t, on chromosome 12, using SSR markers. To map the gene locus, 466 F10 generation Recurrent Inbred Lines (RILs), from the cross of TN1 × CR57-MR1523 were used. Of the 471 SSR markers spread across the rice genome, 56 markers showed polymorphism and were used to screen a subset of the mapping population consisting of 10 resistant (R) and 10 susceptible (S) F10 RILs. Six SSR markers, RM28706, RM235, RM17, RM28784, RM28574 and RM28564 on chromosome 12 were initially found to be associated with resistance and susceptibility. Based on the linkage analysis in selected 158 RILs, we were able to map the locus between two flanking SSR markers, RM28574 and RM28706, on chromosome 12 within 4.4 and 3.8 cM, respectively. Further, two NILs with 99% genetic similarity, were identified from the RILs which differed in gall midge resistance. The tightly linked flanking SSR markers will facilitate marker-assisted gene pyramiding and map-based cloning of the resistant gene. NILs would be valuable materials for functional analysis of the identified candidate gene.  相似文献   
5.
Summary The cracking patterns of load induced cracks were studied by in-situ testing of compact tension specimens within the specimen chamber of a scanning electron microscrope. The cracks propagated in a generally straight path parallel to the grain, regardless of the orientation of the notch. On a microscopic scale, the crack could not be described as an ideal parallel-walled crack as assumed in fracture mechanics models. Many irregularities such as tortuosities, branching, discontinuities and bridging between the crack walls could be seen. Observations were carried out at the tip of the stable crack and at the same zone after the crack was induced to propagate beyond it. The processes taking place in this zone are discussed. The implication of these observations on the applicability of linear elastic fracture mechanics to wood are also discussed.When this work was carried out, Dr. Bentur was on leave at Purdue University, West Lafayette, Indiana  相似文献   
6.
Screening of rice germplasm against Asian rice gall midge, Orseolia oryzae (Wood-Mason), biotypes in India has led to identification of over 300 resistant rice genotypes. However, only ten resistance genes have been characterized so far. Identification of new genes through classical allelism test is tedious and time consuming. We propose to use closely linked flanking Simple Sequence Repeat (SSR) markers in allelism tests for identification of resistance genes. Of the ten known gall midge resistance genes, eight have been tagged and mapped. The Gm1 and Gm2 genes have closely linked flanking markers. Hence SSR markers RM219 and RM444, flanking the gene Gm1, and RM317, RM241 along with the SCAR marker F8, flanking the gene Gm2, were selected for this study. Tests with one set of 13 genotypes likely to carry Gm1 and another set of 17 genotypes suspected to contain Gm2 suggested the presence of the respective allele in all the 13 and 15 genotypes from these sets, respectively. Classical allelism test perfectly matched with the markers test. There were two exceptions involving amplification with RM444 in cultivar Kavya and with RM241 in genotype AE20, suggesting a single recombination which could have resulted in the mismatch. All the three markers in the genotype Bhumansan and the two flanking markers RM317 and F8 in AE20 indicated the absence of the Gm2 allele. This was validated through a classical test, revealing a segregation ratio of 15 resistant: 1 susceptible F2 progeny of both the crosses between the Gm2 source Phalguna and these genotypes. We performed the allelism test with the markers on another set of 56 randomly selected gall midge resistant genotypes to discover possible sources of new resistance genes.  相似文献   
7.
Whitebacked planthopper (WBPH) along with brown planthopper (BPH) has emerged as a major pest of rice in several Asian countries. Development and cultivation of varieties resistant to both planthoppers is an ecologically acceptable strategy to manage these pests. Sinna Sivappu, a Sri Lankan landrace, was reported to be resistant to both planthoppers. While inheritance of BPH resistance has been reported, the genetics of WBPH resistance in this variety is not known. Using a mapping population of 255 F2:3 families from Taichung Native (TN)1/Sinna Sivappu cross and 128 polymorphic simple sequence repeat (SSR) markers, genes or quantitative trait loci (QTLs) for WBPH resistance quantified in ten phenotypic tests were identified, adopting classical Mendelian segregation, correlation and QTL analyses. The inheritance pattern suggested that a single recessive gene controlled regulation of seedling damage score. Antixenosis or nymphal preference was influenced by two complementary recessive genes, whereas tolerance in terms of days to wilt was under the influence of a single dominant gene. Several of these phenotypic tests recorded high degree of positive or negative correlation between them, suggesting dependence or redundancy of the tests. QTL analysis revealed 13 loci associated with nine traits. Five major-effect QTLs were detected for damage score (chromosome 6), nymphal survival (chromosome 12), and days to wilt (three QTLs on chromosome 4). We suggest involvement of four WBPH resistance genes in Sinna Sivappu, designated as wbph9(t), wbph10(t), wbph11(t), and Wbph12(t). One of the recessive genes could be allelic to any of the recessive genes reported in cluster C on chromosome 6 which might confer resistance to both BPH and WBPH.  相似文献   
8.
Nine genotypes were evaluated under greenhouse conditions for antixenosis and tolerance against brown planthopper(BPH, Nilaparvata lugens St?l). In antixenosis studies, proportion of insects settled on a test genotype in relation to the susceptible control TN1 was recorded, with significantly lower proportion of nymphs(55.22%–59.18%), adult males(60.33%–60.75%), and adult females(80.56%–79.26%) settled on RP2068-18-3-5 and Ptb33 in relation to those on TN1. Based on number of feeding sites, the test genotypes were ranked in order from the highest to the lowest as RP2068-18-3-5, Ptb33, MR1523, Rathu Heenati, Sinnasivappu, ARC10550, MO1, INRC3021 and TN1. The order was exactly reverse in terms of fecundity expressed as number of eggs laid per female. In tolerance studies, days to wilt, functional plant loss index and plant dry weight loss to BPH dry weight produced were recorded. RP2068-18-3-5, Rathu Heenati and Ptb33 performed better than the other test genotypes. These results helped in relative quantification of BPH resistance levels in the genotypes. RP2068-18-3-5, a new effective source of BPH resistance, can be used in resistance breeding after tagging of resistant genes/QTLs linked to different parameters of antixenosis and tolerance with selectable molecular markers.  相似文献   
9.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号