首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   1篇
  7篇
农作物   3篇
畜牧兽医   3篇
植物保护   1篇
  2024年   1篇
  2016年   1篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2006年   1篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1980年   1篇
  1973年   2篇
排序方式: 共有14条查询结果,搜索用时 281 毫秒
1.
Nitrogen (N) cycling in terrestrial ecosystems is complex since it involves the closely interwoven processes of both N uptake by plants and microbial turnover of a variety of N metabolites. Major interactions between plants and microorganisms involve competition for the same N species, provision of plant nutrients by microorganisms and labile carbon (C) supply to microorganisms by plants via root exudation. Despite these close links between microbial N metabolism and plant N uptake, only a few studies have tried to overcome isolated views of plant N acquisition or microbial N fluxes. In this study we studied competitive patterns of N fluxes in a mountainous beech forest ecosystem between both plants and microorganisms by reducing rhizodeposition by tree girdling. Besides labile C and N pools in soil, we investigated total microbial biomass in soil, microbial N turnover (N mineralization, nitrification, denitrification, microbial immobilization) as well as microbial community structure using denitrifiers and mycorrhizal fungi as model organisms for important functional groups. Furthermore, plant uptake of organic and inorganic N and N metabolite profiles in roots were determined.Surprisingly plants preferred organic N over inorganic N and nitrate (NO3) over ammonium (NH4+) in all treatments. Microbial N turnover and microbial biomass were in general negatively correlated to plant N acquisition and plant N pools, thus indicating strong competition for N between plants and free living microorganisms. The abundance of the dominant mycorrhizal fungi Cenococcum geophilum was negatively correlated to total soil microbial biomass but positively correlated to glutamine uptake by beech and amino acid concentration in fine roots indicating a significant role of this mycorrhizal fungus in the acquisition of organic N by beech. Tree girdling in general resulted in a decrease of dissolved organic carbon and total microbial biomass in soil while the abundance of C. geophilum remained unaffected, and N uptake by plants was increased. Overall, the girdling-induced decline of rhizodeposition altered the competitive balance of N partitioning in favour of beech and its most abundant mycorrhizal symbiont and at the expense of heterotrophic N turnover by free living microorganisms in soil. Similar to tree girdling, drought periods followed by intensive drying/rewetting events seemed to have favoured N acquisition by plants at the expense of free living microorganisms.  相似文献   
2.
An electronic nose has been used to classify blockmilk products subjected to various heating processes based on their volatile composition. Multivariate analyses of electronic nose and GC/MS data are highly comparable with respect to relative changes in aroma profile going from raw to final product. Predictive properties of various neural networks based on the raw sensor output were moderate to good.  相似文献   
3.
Phosphorus (P) is often a limiting macronutrient in temperate forests, but knowledge on the phenological and physiological responses of beech (Fagus sylvatica L.) to P deficiency is scarce. In this study, young beech trees were excavated with intact soil cores from two German forests, Unterlüss (LUE) with low soil P and Bad Brückenau (BBR) with high soil P concentrations. The trees were transferred to identical climatic conditions. In the subsequent growth phase phenological stages during bud burst and leaf unfolding were recorded; biomass production and total P concentrations in different tissues were measured. Seasonal fluctuations in photosynthesis and of soluble P in wood and bark exudates were determined. BBR beeches grew faster and produced more and larger leaves than the LUE beeches. Leaf extension and unfolding were delayed in LUE compared with BBR beeches, but not the time point of bud break. All plant tissues of BBR trees contained higher total P concentrations than those of LUE trees. Strong seasonal fluctuations for P in exudates of beech transport tissues, wood and bark, indicated higher P supply in BBR than in LUE plants, especially at the beginning of the growth phase until leaf maturity. Photosynthetic activity of LUE beeches was lower than that of BBR beeches due to stomatal limitations as the result of anatomically smaller stomatal pore widths, but not as the result of acute biochemical limitation of photosynthesis. Our results suggest that developmental retardation and lower photosynthesis under low P availability may be adaptation mechanisms that adjust the acquisition and recycling of P resources to seasonal growth demand.  相似文献   
4.
5.
BACKGROUND: Dibenzoylhydrazine analogues have been developed successfully as a new group of insect growth regulators, called ecdysone agonists or moulting accelerating compounds. A notable feature is their high activity against lepidopteran insects, raising the question as to whether species‐specific analogues can be isolated. In this study, the specificity of ecdysone agonists was addressed through a comparative analysis in two important lepidopterans, the silkworm Bombyx mori L. and the cotton leafworm Spodoptera littoralis (Boisd.). RESULTS: When collections of non‐steroidal ecdysone agonists containing different mother structures (dibenzoylhydrazine, acylaminoketone, tetrahydroquinoline) were tested, in vitro reporter assays showed minor differences using cell lines derived from both species. However, when compounds with high ecdysone agonist activity were examined in toxicity assays, larvicidal activity differed considerably. Of note was the identification of three dibenzoylhydrazine analogues with > 100‐fold higher activity against Bombyx than against Spodoptera larvae. CONCLUSION: The present study demonstrated that species‐specific ecdysone‐agonist‐based insecticides can be developed, but their species specificity is not based on differences in the activation of the ecdysone receptor but rather on unidentified in vivo parameters such as permeability of the cuticle, uptake/excretion by the gut or metabolic detoxification. Copyright © 2010 Society of Chemical Industry  相似文献   
6.
Mid-infrared spectra of whey and casein hydrolysates were recorded using Fourier transform infrared (FTIR) spectroscopy. Multivariate data analysis techniques were used to investigate the capacity of FTIR spectra to classify hydrolysates and to study the ability of the spectra to predict bitterness, solubility, emulsifying, and foaming properties of hydrolysates. Principal component analysis revealed that hydrolysates prepared from different protein sources or with different classes of proteolytic enzymes are distinguished effectively on basis of their FTIR spectra. Moreover, multivariate regression analysis showed satisfactory to good prediction of functional parameters; the coefficient of determination (R(2)) varied from 0.60 to 0.92. The accurate prediction of bitterness and emulsion forming ability of hydrolysates by using only one uncomplicated and rapid analytical method has not been reported before. FTIR spectra in combination with multivariate data analysis proved to be valuable in protein hydrolysate fingerprinting and can be used as an alternative for laborious functionality measurements.  相似文献   
7.
8.
Using a human A9 Coxsackievirus strain as antigen and different-aged A2G inbred mice as receptors an in vitro secondary cell-mediated immune response was noticed, revealed by means of two markers, i.e. leukocyte migration inhibition and T spleen lymphocyte blastogenesis, in the presence of viral antigen.  相似文献   
9.
The paper discusses a method to functionalize cotton fabrics using biologically active natural compounds to achieve the antibacterial characteristics required for medical application. The biologically active natural compounds include propolis, beeswax, and chitosan. Three 100 % cotton knitted fabrics with different degrees of compactness were impregnated in the emulsions containing the active ingredients and fabric variant G3 with the highest degree of impregnation was considered for the evaluation of the antibacterial properties and comfort characteristics. The results show that the treated cotton fabric had high antibacterial activity against both gram positive bacteria Staphylococcus aureus and Streptococcus β haemolytic, and gram negative bacteria Escherichia coli and Pseudomonas aeruginosa. The presence of the biologically active natural compounds on the cotton substrates modified the surface of the textile fibers as seen in the SEM images. The treatment also improved fabric comfort properties, the cotton substrates became less air permissive and more hygroscopic after the treatment. The experimental results indicated that propolis, beeswax and chitosan can be applied as an emulsion to functionalize cotton textile materials. The antibacterial performance of the functionalized fabrics suggested that the cotton fabrics treated with those biologically active natural compounds have the potentials to be used in medical fields.  相似文献   
10.
To identify the component(s) causing the foxy odor, characteristic for some Fritillaria imperialis cultivars, the headspace of flower bulbs was analyzed using gas chromatography-olfactometry (GC-O) and GC-mass spectrometry (GC-MS). Six Fritillaria species and cultivars were selected as follows: F. imperialis cv. Premier (very strong foxy odor), F. imperialis cv. Lutea (strong foxy odor), F. imperialis ssp. Inodora (no odor), Fritillaria eduardii (weak mousy odor), Fritillaria raddeana (no odor), and an F1 of F. imperialis Lutea x Inodora (weak foxy odor). Volatiles from these flower bulbs were accumulated on Tenax and injected into the GC by thermodesorption. The majority of the volatiles consisted of low molecular weight aliphatic compounds. GC-O revealed that the foxy odor was caused by a single component, identified as 3-methyl-2-butene-1-thiol on the basis of smell in GC-O analyses (two GC columns), mass spectra, and retention times. Chemical identification was substantiated by GC-O and GC-MS of an authentic standard of 3-methyl-2-butene-1-thiol, prepared by organic synthesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号