首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   101篇
  免费   0篇
  国内免费   1篇
林业   4篇
农学   17篇
基础科学   1篇
  3篇
综合类   36篇
农作物   41篇
  2023年   1篇
  2021年   1篇
  2020年   8篇
  2019年   1篇
  2018年   1篇
  2017年   4篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   1篇
  2012年   3篇
  2011年   2篇
  2010年   7篇
  2009年   9篇
  2008年   6篇
  2007年   1篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   3篇
  1992年   13篇
  1991年   6篇
  1990年   1篇
  1989年   1篇
排序方式: 共有102条查询结果,搜索用时 15 毫秒
1.
作物群体质量及其关键调控技术   总被引:2,自引:0,他引:2  
综合凝炼了水稻、小麦、棉花、油菜和玉米等作物群体质量指标及其关键调控技术。重点阐述了提高花后群体光合积累量是作物群体质量的核心指标,以及与核心指标紧密相关的库容量、茎蘖成穗率(成铃率等)、适宜LAI及其构成、粒叶比(铃叶比)、单茎(秆)质量、根活量(颖花根活量、棉铃根流量等)等主要群体质量指标。介绍了优化群体质量的"小群体、壮个体、高积累"栽培途径,基本苗计算公式,以及"控制无效低效生长、增加产量形成期生长量"的肥水促控关键技术。此外,介绍了作物群体质量及其关键调控技术研究的思路与方法,并将该成果与当前国内外同类研究和传统栽培进行了综合比较。  相似文献   
2.
2007-2008年度通过对不同氮肥水平下28个品种苗期叶片叶绿素含量和光合参数以及氮素籽粒生产效率的测定,结果表明:(1)不同品种氮素籽粒生产效率差异较大,施用氮肥氮素籽粒生产效率显著降低。(2)多数品种施用氮肥叶片叶绿素含量(SPAD值),净光合速率(Pn)增加;PSⅡ最大光化学量子产量(Fv/Fm),光化学淬灭系数(qP)增加,非光化学淬灭系数(qN)减小。(3)叶片叶绿素含量(SPAD值)与净光合速率(Pn)之间,净光合速率(Pn)与PSⅡ最大光化学量子产量(Fv/Fm)之间都表现显著正相关关系。(4)氮素籽粒生产效率与苗期叶片PSⅡ最大光化学量子产量(Fv/Fm)呈显著正相关,不施氮肥条件下氮素籽粒生产效率与SPAD值呈显著正相关。  相似文献   
3.
本文系统地研究了四个油菜品种在机械收获过程中各部位损失量的差异。结果表明:四个油菜品种机械收获损失主要发生在脱粒和清选过程中,占总损失量的80%左右;抗裂角性强的油菜品种可减少自然脱落和割台的损失,但增加了脱粒过程的损失;高产品种虽然机械化收获的损失量最高,但总收获损失率却最低。  相似文献   
4.
不同氮肥和密度对油菜机械收获损失率的影响   总被引:2,自引:0,他引:2  
以华油杂62为材料,采用机械直播的方式,设置不同氮肥和密度处理,在油菜籽粒含水量10.86%~13.17%时研究油菜机械收获各部分损失率及损失组成的差异。结果表明,机械收获总损失率在不同处理间存在差异,变幅在6.13%~7.82%之间。不同部分的损失占总损失比例差异较大,其中,自然脱落损失比例最小,各处理占总损失的比例在2.41%~3.90%之间;其次是割台损失,各处理占总损失的比例为17.99%~21.99%;清选和脱粒损失比例最大,占总损失的74.15%~79.52%,其中主要是夹带损失,占总损失的65.51%~69.05%,而未脱粒角果比例损失较小,占8.64%~10.47%。随着氮肥用量和密度的增加,产量增加;总损失率与产量、氮肥用量及密度的相关系数分别为0.970**、0.918**和0.358。本研究表明,在油菜机械化生产过程中首先要确定适宜的施氮量和种植密度以获得高产,在高产的基础上再降低收获损失率。  相似文献   
5.
甘蓝型油菜氮素吸收利用的杂种优势表现   总被引:1,自引:0,他引:1  
以22个甘蓝型油菜品种(系)为亲本(17个母本,5个父本),按NCⅡ交配设计配成85个F1杂种,研究了产量、氮素吸收总量(TNA)和氮素籽粒生产效率(NUEg)的杂种优势表现。以杂种离中亲优势值(Hm)和超优亲优势值(Hb)作为杂种优势的评价指标,以Hm和Hb的显著差异出现率作为一个性状杂种优势潜力的指标。结果表明:产量的Hm正向显著组合数占杂种总数的87.06%;Hb正向显著组合数占杂种总数的60.00%,表明产量的离中亲优势值比超优亲优势强。TNA的Hm正向显著组合数占杂种总数的40.00%;Hb正向显著组合数为18个,占杂种总数的21.18%。NUEg的Hm正向显著组合数占杂种总数的67.06%;Hb正向显著组合数占杂种总数的47.06%。表明氮素籽粒生产效率杂种优势比氮素吸收总量杂种优势更为明显。  相似文献   
6.
【目的】研究油菜育秧盘毯状苗移栽,大田不同氮肥和密度耦合对油菜碳氮积累、运转和利用效率的影响,探讨植株碳氮代谢与油菜产量形成的关系。【方法】以宁杂1818油菜品种为试验材料,通过毯状苗的培育和移栽试验,比较不同年份、氮肥以及密度条件下碳氮积累、运转以及利用效率差异。【结果】油菜毯状苗适宜条件下移栽也可以获得3 750 kg·hm~(-2)高产。不施氮肥以及225 kg·hm~(-2)氮肥处理条件下随着密度增加产量显著增加,在300 kg·hm~(-2)氮肥处理和125 000穴/hm~2移栽密度条件下1穴1株、1穴2株和1穴3株间产量无显著差异。油菜植株中碳素积累能力显著高于氮素积累能力,初花期前植株C/N比较低,为16.30,初花期后C/N比较高,为114.37。碳素籽粒生产效率、氮素籽粒生产效率随着氮肥用量增加呈下降趋势,其中氮素籽粒生产效率随施氮量增加下降幅度更大。初花期至成熟期叶片氮素运转率最高,不同处理变化范围为73.90%—78.56%,其次是茎枝氮素运转率,变化范围为38.96%—67.08%,根中氮素运转率最低,变化范围为24.45%—37.06%。不同处理叶片中氮素运转率差异较小,茎枝和根中氮素运转率随着氮肥用量增加逐渐降低。初花期至成熟期叶片碳素运转率为正值,不同处理变幅为23.16%—29.08%,随着密度增加叶片碳素运转率总体上呈增加趋势,不同氮肥处理间差异相对较小。初花期至成熟期根和茎枝仍然以积累碳素为主,两者碳素运转率表现为负值。【结论】油菜毯状苗机械移栽,可有效提高茬口较迟地区的油菜生产能力。油菜在初花期之前氮代谢能力强,初花期以后碳代谢能力强,前期氮素供应有利于植株营养体的建成,从而使得后期积累更多的碳素,促进后期的产量形成。  相似文献   
7.
以98个甘蓝型常规油菜品种(系)为材料,采用大田试验,设置N1(施纯氮150 kg/hm2)和N0(不施氮肥)两个氮肥处理,采用组内最小平方和动态聚类方法对供试品种的磷素籽粒生产效率(PUEg)进行聚类(分为A、B、C、D、E五类),研究甘蓝型油菜磷素籽粒生产效率与籽粒蛋白质和油分含量的关系。相关分析结果表明,PUEg与蛋白质含量呈极显著负相关(rN0=-0.3746、rN1=-0.2672),与油分含量呈极显著正相关(rN0=0.4105、rN1=0.3670)。PUEg与油分总量之间表现为极显著正相关,N0和N1处理相关系数分别为0.4884和0.5432。随着PUEg增加,不同类型品种中油分含量和总量逐渐增加。增施氮肥后,籽粒蛋白质含量、总量的平均值均增加,油分含量平均值减小、总量平均值增加。  相似文献   
8.
迟直播油菜适宜密度研究   总被引:3,自引:0,他引:3  
目前我国自产的植物油脂只占国内总消费量的40%左右,这在食用植物油脂的安全供给上存在极大的隐患.油菜作为我国最主要的油料作物,在保证粮食和油料的安全供应方面有双重的作用.然而随着农业劳动力向其他行业的转移以及农业生产机械化水平的不断提高,油菜机械化生产难度大的问题已成为限制油菜进一步发展的主要因素之一.种植过程的机械化是油菜机械化生产的重要环节之一.  相似文献   
9.
试验表明春油菜的胚长、子叶长宽、胚轴长宽的变化基本同步,都呈现S形曲线,增长峰值出现在花后第14—15天,接近最大值的时间在花后第22—25天。胚干重在花后第28天增加最快,日增量达0.24mg.胚细胞数在花后第22天不再增加,此时胚干重仅为其最终胚重的1/5左右,而胚长已接近最大值,施用氮肥能使胚早期发育延缓,同时能防止胚珠退化,增加粒数,提高粒重。  相似文献   
10.
为优化培育高质量油菜毯状苗的方法,完善育苗体系,以甘蓝型双低油菜品种宁杂1838为材料,采用传统标准的水稻育秧盘进行油菜毯状苗育苗,设置了在试验基质中拌入不同量硫酸铵的处理,通过测定油菜苗在不同时期的农艺性状、器官干重,研究了硫酸铵在不同用量对油菜毯状苗的调控效应;结果显示,试验基质中硫酸铵最佳用量范围为每盘4.37~4.62 g,这一用量条件下可显著增加存苗数、出叶数、绿叶数和单株叶面积,且干物质积累最多,最有利于毯苗移栽后返青活棵。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号