首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
  国内免费   2篇
林业   5篇
基础科学   1篇
  2篇
综合类   19篇
园艺   1篇
植物保护   1篇
  2023年   2篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2007年   1篇
排序方式: 共有29条查询结果,搜索用时 33 毫秒
1.
目的光能利用效率(LUE)是表征植被通过光合作用将所吸收的能量转化为有机干物质效率的指标,也是估算生态系统生产力的重要参数,为了提高油蒿灌木荒漠生产力的估算和预测精度,本文研究了油蒿灌木荒漠LUE的季节动态以及环境因子对其的调节机制。方法本研究于2014年5—10月通过涡度协方差法观测了宁夏盐池典型油蒿灌木荒漠生态系统的净碳交换、光合有效辐射、温度和水分等因子,分析油蒿灌木荒漠生态系统LUE的昼夜和季节变化及与其主要环境因子的关系。结果在日尺度上,LUE在14:00时达到最低值(0.000 8 ~ 0.002 4 μmol/μmol)。LUE的日变化主要受到冠层导度(gs)和光合有效辐射的影响。在季节尺度上,LUE从5月份开始迅速升高,9月份达到最大值(0.002 5 g/MJ),而后逐渐降低。LUE月平均值介于0.000 9 ~ 0.002 5 g/MJ之间。LUE的季节变化主要受土壤氮含量(Nsoil)、冠层导度(gs)和光合有效辐射(PAR)的影响。结论通过以上研究,发现在季节尺度上,通过增加土壤中的氮含量可以促进生态系统总生产力(GEP),从而增大油蒿灌木荒漠的光能利用效率。研究结果可以为提高半干旱区油蒿灌木荒漠生态系统生产力提供一定的理论指导,也为区域植被恢复重建提供重要参考。   相似文献   
2.
【目的】探究小叶鼠李叶片的光、氮、水资源利用效率(RUEs)在较长时间尺度(季节)上的变化特征,分析环境变化对RUEs季节动态的影响、叶片功能性状与RUEs的关系以及不同RUEs间的权衡关系。【方法】2021年6—10月,在北京密云山区,以当地林下优势灌木小叶鼠李为研究对象,对其光合参数和环境因子进行连续原位观测,使用LI-6800便携式光合测定仪测量小叶鼠李叶片光合光响应曲线的特征参数,同时测量其叶片功能性状,结合观测的环境因子数据,分析小叶鼠李叶片内禀水分利用效率(WUEi)、氮利用效率(NUE)和光利用效率(LUE)季节动态变化的影响因素及RUEs间的权衡关系。【结果】1)小叶鼠李在生长期内WUEi、NUE、LUE的最大值分别为107.3μmol·mol-1、18.35μmol·g-1s-1、0.087 mol·mol-1,其季节变异系数(CV)分别为24.91%、39.12%、12.6%。2)在生长季中期,土壤相对可利用含水量充足的湿润条件下(RE...  相似文献   
3.
目的基于半经验半理论的Priestly-Taylor模型(PT)估算蒸散发(ET)时,主要依赖于精确确定该模型系数α在特定研究区内的适宜值,本研究就该模型系数α的适用性进行了本地化研究,以便更准确地估算干旱半干旱区的蒸散发。方法在中国西北干旱地区毛乌素沙地的一个生长季内,采用涡度协方差技术并结合气象数据信息,监测研究区典型油蒿灌丛地的水、热交换传输过程,以分析PT模型系数α的季节变化特征并确定其本地化估算参考值。结果在季节变化过程中,实际PT模型系数α整体变化较明显,展叶期内α系数呈单峰型变化趋势,完全展叶期和叶变色期内的α系数变化不明显;日均α系数最大值为0.66,最小值为0.03,全生长季α系数均值为0.23。油蒿生长季内α系数与冠层导度和饱和水汽压差呈对数正相关;土壤含水量(30 cm处)以及叶面积指数与α系数均为正相关关系。在季节变化过程中,PT模型常规系数α=1.26确定的蒸散量(ET1.26)估算值以及根据逐日温度和2 m高度处风速资料计算的PT模型系数α=0.50确定的蒸散量(ET0.50)估算值均显著大于实测蒸散发。改进的PT模型系数的本地化推荐适宜值为0.23,并且通过修正后的PT模型估算ET与实测值之间存在较好的一致性,线性斜率为0.72,R2为0.57。结论因此,修正的PT模型显著提高干旱半干旱区植被蒸散发估算精度,为区域植被水文过程模型提供支持。   相似文献   
4.
为分析城市绿地净生态系统碳交换(Net ecosystem exchange,NEE)对环境因子的响应,利用涡度相关法测量了2013—2016年生长季白天的NEE数据,使用XGBoost以及ANN模型对NEE进行模拟和分析,并通过决定系数(R~2)、平均绝对误差(MAE)、均方根误差(RMSE)和一致性系数(IA) 4个指标评价模拟精度。结果表明,当输入因子为光合有效辐射(PAR)、饱和水汽压差(VPD)、空气温度(Ta)、相对湿度(RH)、土壤温度(Ts)、风速(WS)、10 cm处土壤含水率(VWC10)时,模拟效果达到最优。其训练集精度R~2为0. 712,RMSE为4. 394μmol/(m~2·s),MAE为3. 129μmol/(m~2·s),IA为0. 911;测试集精度R~2为0. 748,RMSE为4. 253μmol/(m~2·s),MAE为2. 971μmol/(m~2·s),IA为0. 920。在考虑因子间相互作用后,环境因子对NEE的重要性排序从大到小依次为PAR、VPD、Ta、RH、Ts、WS、VWC10;就单环境因子而言,对NEE的重要性由大到小依次为Ta、Ts、RH。通过计算生态系统净生产力(Net ecosystem productivity,NEP,即-NEE)对主要环境因子(PAR、VPD、Ta)的偏导数可知,生态系统光合作用表观量子效率最大值为0. 087,并且当PAR大于1 200μmol/(m~2·s)时,其不再是影响光合作用的主要因素; VPD偏导数的变化趋势表明,VPD对植物光合作用的影响以抑制性为主,当VPD过大时,偏导数趋近于0,此时植物叶片气孔闭合,抑制光合作用; Ta偏导数的变化趋势说明,随着温度的升高,光合作用速率逐渐大于呼吸作用的速率。研究表明,基于XGBoost与ANN模型能够更为精确地模拟NEE动态,在相关环境因子中,PAR、VPD、Ta是影响NEE变化的主导因子,NEE对主要影响因子的生态特征响应趋势可为理解碳循环关键过程提供参考。  相似文献   
5.
目的干旱半干旱区植物的水分传输过程依赖于一套有效的调控机制,研究典型沙生植物对土壤干旱的响应机制有助于预测未来气候条件下荒漠生态系统的结构和功能变化。方法采用包裹式茎流仪于2017年5—10月对毛乌素沙地沙柳液流进行长期连续观测,期间选择天气晴朗的19 d测得黎明前叶水势与正午叶水势,同步连续监测林冠上方太阳辐射、气温、空气相对湿度与土壤含水量。结果(1)短期内土壤水势与枝条液流具有较好的相关性(5—6月、7—9月),整个生长季内液流密度与土壤叶片水势差(ΨL-ΨS)呈正相关。(2)叶片水势(ΨL)、大气水汽压亏缺(VPD)均对叶片蒸腾速率(EL)有调控作用,小于阈值呈正相关,大于阈值呈负相关。VPD对EL调控阈值为1.9 kPa,ΨL对EL调控阈值为?3.7 MPa。VPD对叶片导度(gL)有显著调控作用,调控阈值为0.9 kPa,小于阈值呈正相关,大于阈值呈负相关。(3)沙柳木质部栓塞脆弱性曲线呈“r”形,引起枝条50%导水率损失的压力值(P50)为0.73 MPa。(4)整体上看,正午木质部传导度(Ks)与正午叶片传导度(gL)是正相关的。Ks与黎明前叶水势(ΨS)呈现正相关关系,而gL受VPD影响较大导致其与ΨS相关性弱。gL与Ks对于土壤干旱(ΨS降低)的相对敏感性(?)为 1.035 。结论以上结果表明,随着水分胁迫加重,木质部在水势较高时便通过降低导水率来减少水分丧失,木质部栓塞到一定程度也不关闭气孔,而是能保持一定的气孔开度。这些适应策略在一定程度上反映了沙柳最大化蒸腾和同化速率的一种机制,对正确认识干旱地区沙柳的水分利用特征有明显的理论意义,为深入研究沙柳的水力限制补偿机理奠定基础。   相似文献   
6.
毛乌素沙地典型沙生灌木对土壤蒸发的影响   总被引:3,自引:0,他引:3  
为了探求半干旱沙区植被恢复后沙生灌木对土壤蒸发的影响,本文利用微型蒸渗仪对盐池沙区的流动沙地、油蒿群落和沙柳群落的土壤蒸发进行了测定,并分析了2014年盐池降雨、风速、太阳辐射、相对湿度、空气温度、土壤机械组成分别与土壤蒸发的关系。结果表明:1) 植被恢复区油蒿群落和沙柳群落土壤蒸发总量比流动沙地分别高出27.91%和40.23%;2) 油蒿和沙柳样地黏粒含量比流动沙地分别高出220.59%和173.53%,油蒿样地和沙柳样地黏粒和粉粒的总含量比流动沙地分别高出63%和98%;3) 油蒿和沙柳样地土壤蒸发与风速、太阳辐射、温度等气象因子相关性不显著,流动沙地土壤蒸发与太阳辐射相关性显著。因此,在半干旱沙区植被恢复后,土壤蒸发有增大的趋势,这很可能与植被恢复后土壤中黏粒和粉粒含量的增加有关。   相似文献   
7.
北京植被净初级生产力对物候变化的响应   总被引:1,自引:1,他引:0  
植被净初级生产力(Net Primary Productivity,NPP)对物候的响应是全球气候变化背景下的重要研究内容,气候变化对植物物候与NPP的影响仍需明了,物候的时空变异规律更需深入探讨。该研究基于2001-2020年MODIS归一化植被指数(Normalized Difference Vegetation Index,NDVI)数据提取北京植被物候信息,利用CASA(Carnegie-Ames-Stanford-Approach)模型模拟NPP,通过线性回归、趋势分析和结构方程模型等方法,阐明NPP与物候时空变化特征,探究气象因素和物候变化对NPP的影响。结果显示:1)2001-2020年超过70 %的区域出现生长季开始(Start of Growing Season,SOS)逐渐提前,平均每年提前0.53 d。超过90%的区域生长结束期(End of Growing Season,EOS)逐渐推迟,平均每年推迟0.51 d。2)SOS提前和生长季(Length of Growing Season,LOS)延长均对NPP增长产生显著影响(P<0.05)。SOS每提前1 d,NPP增长3.74 g/m2;LOS每延长1 d,NPP增长2.56 g/m2 。秋季EOS推迟对NPP变化影响不显著。3)春季和秋季,气候通过改变物候(SOS、EOS)对NPP的间接影响大于直接影响,而夏季温度和降雨对NPP的直接影响更大。该研究表明春季物候变化是NPP年际变异的重要驱动因子,春季物候提前导致NPP年总量增加。研究结果是都市区植被生产力如何响应气候变化认识的重要补充。  相似文献   
8.
以"日本金塔"、"赤峰板椒"、"改良佳线"3种制干辣椒为试材,从辣椒现蕾期开始,利用碳酸氢钠进行持续盐胁迫,分析3个品种的光合参数变化,探讨不同品种辣椒对持续盐胁迫的抗性反应。结果表明:持续盐胁迫下"改良佳线"的耐盐性较好,并且耐盐特征在处理早期即有表现;"日本金塔"的耐盐性次于"改良佳线",光合系统受到的胁迫程度较小;"赤峰板椒"的耐盐性较弱,长期盐胁迫下"赤峰板椒"光合系统受到较大的损伤;不同浓度盐处理结果表明,30mmol/L的盐浓度对3种辣椒的光合作用有一定的促进作用,60mmol/L的盐浓度对光合作用及荧光参数影响不显著,较高的盐浓度90mmol/L对3种辣椒的光合作用有明显的抑制作用。  相似文献   
9.
在宿迁、徐州、淮安观测站人工观测气象资料的基础上,进行田间试验,研究淮北冬小麦的适宜播期.结果表明:20世纪90年代以来,淮北冬小麦全生育期总积温增加了120~280℃,越冬前积温增加了50~100℃;越冬期缩短了23d左右,越冬期平均气温升高了1.5℃左右.在气候变暖和暖冬背景下,淮北地区冬小麦适宜播期比常年推迟7~10d,在10月中旬到10月下旬前期播种为宜.10月上旬播种,冬前易出现旺长;11月上旬或以后播种,叶龄偏小,不利于形成壮苗.温度越高,生长1张叶片所需要的能量越多,叶片生长速度越快.  相似文献   
10.
随着城市化进程的推进,城市公园绿地的面积也在不断地增加。在碳循环与气候变化研究中,以人工植被为主要存在形态的城市绿地生态系统,其潜在的碳汇功能亦不容忽视。基于涡度相关技术,于2011年12月1日至2012年11月30日对北京奥林匹克森林公园城市绿地生态系统进行了碳通量观测,以探讨城市绿地生态系统碳交换及其与环境因子的关系及其源/汇属性和强度。研究发现:奥林匹克森林公园绿地年总生态系统生产力(Gross ecosystem production, GEP)、生态系统呼吸(Ecosystem respiration, Re)、生态系统净生产力(Net ecosystem production, NEP)具有明显的季节变化,生长季(4月—11月)以吸收二氧化碳(CO2)为主,非生长季以释放CO2为主。Re随空气温度(Air temperature, Ta)呈指数增加,温度敏感性系数(Q10)为2.5;GEP也随Ta的升高而增加;GEP与Re对Ta的响应差异决定着NEP与Ta的关系:当Ta < 10.0 ℃时,NEP随Ta升高而下降;当Ta > 10.0 ℃时, NEP随Ta升高而增加。在生长季各月,日总GEP随日光合有效辐射(Photosynthetically active radiation, PAR)的升高而增加,生态系统光合作用表观光量子效率(α)和平均最大光合速率(Amax)也表现出明显的季节变化,最大值出现在7月,分别为0.083 μmol CO2/μmol PAR 和29.46 μmol/m2?s,最小值出现在11月,分别为0.017 μmol CO2/μmol PAR和4.16 μmol/m2?s。奥林匹克森林公园绿地全年GEP 、Re、NEP的年总量分别为1192、1028、164 g C/m2。该研究结果可用于估算、模拟预测相似城市生态系统在气候变化背景下生态系统净碳交换,可作为城市绿地生态系统管理与应对气候变化的重要理论基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号