首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
  4篇
综合类   4篇
  2020年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
为探讨花生壳生物炭用于农田土壤改良的效果,采用盆栽试验,结合静态箱-气相色谱法研究了施用不同剂量(0、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土的理化性质及温室气体排放变化特征的影响。结果表明,施用生物炭对潮土温室气体排放的影响较大,且两种土壤表现出不同的排放特征。总体上,潮土N_2O累积排放量显著高于红壤,与单施氮肥处理相比,随生物炭添加量的增加,潮土N_2O累积排放量显著降低,降幅达6.5%~26.6%;红壤N_2O累积排放量则随生物炭添加量的增加呈上升趋势,与单施氮肥处理相比,红壤N_2O累积排放量增幅为14.7%~54.3%。与对照相比,施用生物炭显著增加潮土CO_2排放,其累积排放量增幅最大为25.9%;而对红壤CO_2累积排放量则没有显著影响。此外,在施用不同剂量生物炭处理下,两种土壤CH_4排放无规律性变化,CH_4排放累积量总体在0左右。与空白对照和单施氮肥处理相比,随生物炭添加量的增加,两种土壤的固碳量显著增加,潮土增加了57.1%~78.7%,红壤增加了11.2%~59.9%;同时随生物炭的施用,潮土温室气体排放强度显著提高68.0%~76.8%,而生物炭添加量对红壤的温室气体排放强度无显著影响。分析认为,对潮土施用生物炭通过改变土壤容重、有机碳、无机氮等养分含量,显著提高温室气体排放强度,抑制供试作物生长,增强其净综合温室效应;而对红壤添加生物炭则可促进作物生长,其温室气体排放强度无显著增加,提升土壤固碳量,具有较好的生态效应。  相似文献   
2.
不同原料生物炭对铵态氮的吸附性能研究   总被引:7,自引:3,他引:4  
为探讨不同原料生物炭对铵态氮吸附量及吸附机制,以花生壳、玉米秆、杨木屑和竹屑为原料,在500℃下充N_2保护热解制备生物炭,通过电镜扫面图(SEM)与傅立叶红外光谱图(FTIR)表征NH_4~+-N在生物炭表面的吸附特征,结合批量平衡吸附试验,对比研究不同原料生物炭对NH_4~+-N的吸附性能。结果表明:吸附后生物炭表面附着颗粒或粉末物质,孔隙被填充,表面变得较为平坦。四种生物炭表面分布的-OH、-C=O、-C-O,以及花生壳生物炭与玉米秆生物炭表面的-CH_3、-CH_2、-O-参与了吸附;Langmuir方程可以较好地拟合四种生物炭对NH_4~+-N的等温吸附;吸附均在50 min内达到平衡,伪二级动力学方程均可以较好地描述生物炭对NH_4~+-N的动力学吸附过程;在溶液pH=7.00条件下,初始浓度为800 mg·L~(-1)的体系中,四种生物炭对NH_4~+-N的最大吸附量为9.5~15 mg·g~(-1),吸附能力大小为花生壳生物炭玉米秆生物炭竹屑生物炭杨木屑生物炭。研究表明,生物炭表面含氧官能团对吸附NH_4~+-N起到决定性作用,吸附为单分子层吸附,且由快速反应所控制,四种生物炭中吸附性最好的是花生壳生物炭。  相似文献   
3.
研究了施用不同剂量(0%、0.5%、1%、2%、4%)花生壳生物炭对红壤和潮土种植小白菜(Brassica rapa L.chinensis)生长及氮素养分利用效率的影响。利用淋溶土柱装置、根系扫描仪明确各处理小白菜生物量、根系形态指标,收获后土壤残留氮素养分含量,氮素利用效率,淋溶液氮含量等指标,探讨生物炭对不同类型土壤作物生长和养分利用的影响特征和机制。结果显示:与空白对照和单施氮肥处理相比,施用生物炭在潮土上显著降低小白菜地上和地下生物量,降幅分别达59.1%~77.2%、70.6%~80.6%,但在红壤上却显著增加小白菜地上和地下生物量,增幅分别达35.7%~69.0%、63.0%~77.1%。此外,生物炭对其根系形态指标亦影响显著,随生物炭施用量的增加,在潮土中施用生物炭,小白菜主根长降低了11.5%~30.1%,根表面积降低45.6%~55.9%,根冠比呈先增加后降低的趋势;而在红壤中施用生物炭,对小白菜根长影响不显著,根表面积增加47.5%和56.7%,根冠比显著降低。说明施用生物炭在红壤上促进小白菜根系发育,而在潮土上抑制小白菜根系发育。在潮土中施用生物炭,降低小白菜氮素吸收效率64.7%~73.5%,氮肥偏生产力降低65.1%~79.3%;在红壤中施用生物炭则提高了小白菜氮素吸收效率44.7%~59.6%,氮肥偏生产力增加了32.0%~63.2%。同时,施用生物炭显著降低小白菜植株硝酸盐含量,降幅分别达40.9%~84.6%和18.8%~75.0%。在红壤中施用生物炭,通过促进小白菜根系发育,提高其产量,降低红壤氮素残留,提高氮肥的利用效率,具有良好的生态效益;而对潮土施用生物炭,则抑制小白菜根系发育,降低其产量,降低其氮肥的利用效率,生物炭对潮土的高效安全施用仍需进一步探讨。  相似文献   
4.
添加生物炭改善菜地土壤氨氧化细菌群落并提高净硝化率   总被引:2,自引:0,他引:2  
  【目的】  氨氧化过程是硝化作用的限速步骤,对氮循环有着重要影响。本研究通过分析生物炭输入下土壤氨氧化微生物群落的变化,揭示其影响土壤硝化作用的生物学机制。  【方法】  以华北潮土区设施菜地土壤为对象,设置生物炭梯度 (C0、C0.5、C1.5、C4.0) 土壤培养试验,结合PCR和T-RFLP等分析技术,观测生物炭输入下土壤氨氧化细菌群落变化动态,解析生物炭、土壤硝化作用与氨氧化细菌群落之间的关系。  【结果】  添加生物炭明显改变了土壤氨氧化微生物群落结构及氮素硝化过程。与未添加生物炭处理相比,生物炭添加处理培养前期土壤氨氧化细菌群落Shannon、Evenness指数分别升高5.4%~18.8%、26.2%~33.8%,后期Shannon指数降低20.7%~34.2%。生物炭输入对AOA群落没有明显影响,AOB群落256、58 bp代表物种丰度分别增加61.4%~56.0%、60.6%~78.6%,488 bp代表物种丰度降低22.8%~26.9%。21 bp代表物种丰度前期增加后期降低,与491 bp代表物种丰度变化相反。添加生物炭土壤AOB amoA基因丰度增加48.9%~53.2%。土壤NO3–-N含量提高1.7%~25.6%,NH4+-N含量下降13.4%~31.1%,土壤净硝化速率提高21.8%~70.2%。  【结论】  生物炭的输入可以改善以AOB为主的土壤氨氧化微生物群落结构,提高amoA酶活性,但是对氨氧化古菌微生物群落结构未产生明显影响。因此,生物炭提高土壤净硝化速率的作用与其对土壤氨氧化细菌群落和组成的影响密切相关。  相似文献   
5.
通过施用不同质量比的生物炭(0.5%、1.0%、2.0%、4.0%),研究生物炭施用对红壤和潮土微生物群落结构的影响。通过土柱培养试验,采用磷脂脂肪酸法测定不同处理土壤微生物的群落结构。添加1.0%、2.0%、4.0%生物炭处理与添加0.5%生物炭处理相比,潮土细菌PLFAs含量增加了9.5%~56.7%;添加0.5%和1.0%生物炭细菌的磷脂脂肪酸(PLFAs)含量分别显著降低了33.7%、27.3%;添加0.5%、2.0%、4.0%生物炭处理的革兰氏阴性细菌PLFAs的含量与单施氮肥处理相比显著下降了27.6%~48.8%,生物炭施用对真菌、放线菌、革兰氏阳性细菌、真菌PLFAs含量和细菌PLFAs含量的比值(真/细)和总PLFAs含量总体没有显著影响。生物炭施用对红壤的微生物PLFAs含量没有显著影响。在添加生物炭的处理中,生物炭施用量的增加使饱和脂肪酸含量/不饱和脂肪酸含量有降低的趋势。通过比值分析、多样性分析和主成分分析可知,短期生物炭刺激对红壤和潮土的微生物群落结构没有显著影响,2种土壤微生物生态位未产生分化。  相似文献   
6.
铁锰镁离子改性生物炭对溶液硝态氮的吸附性能研究   总被引:1,自引:0,他引:1  
为突破生物炭对硝态氮吸附的局限性,以花生壳为原料,在600℃条件下热解制备生物炭(BC),分别用FeCl3、MnCl2、MgCl2对其进行金属负载改性(BC-Fe、BC-Mn和BC-Mg),设计批量吸附试验,结合扫描电镜(SEM)、傅里叶变换红外光谱(FTIR)和X射线衍射(XRD)等进行表征分析。结果表明,铁、锰、镁离子改性使生物炭的比表面积增大6.67~12.16倍,孔容增加3.30~6.00倍,并显著增强了对硝态氮($\text{NO}_{3}^{-}$-N)的吸附性能(P<0.05),吸附量较BC增加11.5%~17.1%,BC-Fe、BC-Mn和BC-Mg对$\text{NO}_{3}^{-}$-N的最大吸附量分别为41.58、39.04、39.58 mg·g-1,铁、锰、镁离子与炭的最佳质量比分别为0.80、0.20、0.20,铁离子改性效果最好;酸性条件有利于改性生物炭对$\text{NO}_{3}^{-}$-N的吸附,吸附动态符合Langmuir方程(R2=0.935~0.961),吸附过程符合准一级动力学方程(R2=0.971~0.980)。综上,通过金属离子改性,增大了生物炭的比表面积和孔容,优化了表面结构。此外,改性生物炭表面的含氧官能团和金属离子能通过形成氢键或静电作用吸附$\text{NO}_{3}^{-}$-N,进而增强对$\text{NO}_{3}^{-}$-N的吸附能力。本研究结果为生物炭吸附材料的制备及吸附性能优化提供了理论依据。  相似文献   
7.
为探求和估算我国主要农作物化肥用量,本文分析了30多年来我国农作物化肥使用现状和不同类型农作物的化肥使用情况。结果发现我国农作物化肥使用量增长迅速,从1980年的1 269.4万t增长到2014年的5 995.9万t,增长了4.7倍,年均增长率为4.67%。谷类作物化肥用量仍然是农作物化肥使用总量的主要贡献者,其化肥用量从1980年2 712.41万t增加到2014年的3 415.35万t,但其所占农作物化肥总用量的比重却下降明显,从60.02%(1998年)降至49.75%(2014年)。蔬菜和水果的化肥用量增长最为迅速,其中蔬菜化肥用量1998年为604.51万t,2014年增加到1 291.36万t,增加了2.1倍,其化肥用量占农作物化肥总用量从1998年的13.38%增加至2014年的18.81%;水果化肥用量1998年为531.55万t,至2014年增加到1 223.42万t,增加了2.4倍,其化肥用量占农作物化肥总用量从1998年的11.76%增长到2014年的17.82%。同时,我国不同区域化肥用量差异较大,从化肥施用总量来看,大体上呈现从东到西的递减趋势,其中华东地区和华中地区用量较高,从单位面积化肥用量来看,呈现从东到西递减趋势,同时从南到北也呈现了递减趋势,用量较高区为华南和华东地区。  相似文献   
8.
中国主要农作物化肥用量估算   总被引:3,自引:2,他引:1  
为探求和估算我国主要农作物化肥用量,本文分析了30多年来我国农作物化肥使用现状和不同类型农作物的化肥使用情况。结果发现我国农作物化肥使用量增长迅速,从1980年的1 269.4万t增长到2014年的5 995.9万t,增长了4.7倍,年均增长率为4.67%。谷类作物化肥用量仍然是农作物化肥使用总量的主要贡献者,其化肥用量从1980年2 712.41万t增加到2014年的3 415.35万t,但其所占农作物化肥总用量的比重却下降明显,从60.02%(1998年)降至49.75%(2014年)。蔬菜和水果的化肥用量增长最为迅速,其中蔬菜化肥用量1998年为604.51万t,2014年增加到1 291.36万t,增加了2.1倍,其化肥用量占农作物化肥总用量从1998年的13.38%增加至2014年的18.81%;水果化肥用量1998年为531.55万t,至2014年增加到1 223.42万t,增加了2.4倍,其化肥用量占农作物化肥总用量从1998年的11.76%增长到2014年的17.82%。同时,我国不同区域化肥用量差异较大,从化肥施用总量来看,大体上呈现从东到西的递减趋势,其中华东地区和华中地区用量较高,从单位面积化肥用量来看,呈现从东到西递减趋势,同时从南到北也呈现了递减趋势,用量较高区为华南和华东地区。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号