首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
综合类   9篇
  2024年   1篇
  2023年   2篇
  2022年   1篇
  2018年   3篇
  2014年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
天然气液化工艺是海上浮式液化天然气船(Floating Liquid Natural Gas,FLNG)的关键技术之一,目前国内外尚无专门针对FLNG液化工艺设计的标准,有必要针对FLNG的液化工艺流程和优化方法开展研究。以中国南海某深水气田为研究目标,根据海上FLNG的特点和对国外FLNG项目液化工艺的调研,提出了FLNG液化工艺选择原则与优化方法,筛选出6种可能适合于目标气田的液化工艺流程,并对其在压缩功耗、冷却负荷、主要设备等方面进行综合比选,初步筛选出丙烷预冷-双级氮膨胀液化工艺作为目标气田液化工艺,并采用软件动态模拟和试验验证该液化工艺在海上的适应性。软件动态模拟结果和试验结果趋势一致,验证了动态模型的准确性以及利用动态仿真预测试验结果的可行性,表明该液化工艺具有较好的动态性能和海上适应性。最终确定将丙烷预冷-双级氮膨胀液化工艺作为目标气田的FLNG液化工艺,并为其他FLNG项目液化工艺的选择提供了技术支持和参考依据。  相似文献   
2.
FLNG(Floating Liquefied Natural Gas)液化工艺受规模、原料气组分及环境条件等影响较大,为了实现大规模工业化应用,基于南海某目标气田相关情况,建立丙烷预冷双氮膨胀液化工艺的FLNG小试及中试液化试验装置,并对试验结果进行FLNG放大过程的规律分析。结果表明:随着原料气处理规模的增大,丙烷预冷双氮膨胀液化工艺对原料气参数的敏感性变弱,且预冷段作用愈加明显,不仅可以降低装置能耗、氮气液化及过冷负荷,且可以减小氮气循环量,提高整体液化工艺的液化能力。在倾斜及晃荡工况下,冷箱内原料气温度变化不大,整个液化装置对晃动的适应性较强。液化工艺选择、设备选型、回收量对整个液化系统的液化率及液化能力的影响较大。随着液化规模的增大,高效的机组效率和合理的能量回收方式,在保证液化系统正常运行的同时,可以有效降低整个装置的能耗,提高经济效益。  相似文献   
3.
板翅式换热器封头挡板结构的优化   总被引:1,自引:0,他引:1  
板翅式换热器封头内存在的物流分配不均是导致换热器性能下降的主要因素。通过对封头结构气液两相物流分配进行数值模拟和室内实验研究,对无挡板封头内部流场进行了分析,根据其物流分配特点和规律提出了一种具有普遍适用性的改进型挡板结构。通过对挡板位置、挡板厚度以及开孔孔径的敏感性分析,优化了挡板参数,并与其他型式封头进行了对比。结果表明:改进型挡板结构具有普遍适用性,可以有效改善封头内部的物流分配情况,出口通道的流量标准偏差比无挡板封头降低了一个数量级,比错排孔板型封头降低约50%,该结构对于改善板翅式换热器的换热性能以及可靠性的提高具有重要作用。(图16,表1,参Ii)  相似文献   
4.
高压下的天然气管道一旦发生泄漏,遇到明火极易形成喷射火,将会对管道周围人员人身及财产安全造成极大威胁。为了研究室外高压天然气喷射火火焰的燃烧特性,基于天然气喷射火影响机理,选取运行压力为5.8 MPa、管径为25 mm的天然气管道开展了室外高压天然气水平喷射火实验。结果表明:当天然气燃烧达到稳定时,在高温火焰导致的浮力作用下,火焰会产生11.3°±1.4°的倾角;当天然气喷射燃烧时,在泄漏孔的孔口处会形成未参与燃烧的喷射气流,此区域气流的喷射速度较快、不易燃烧,喷射火焰中心区域平均温度超过1 000℃,且火焰中心最高温度超过1 300℃;火焰水平长度为19~21 m,在距离火焰中心10 m处的热辐射强度达到最大值20 kW/m2。实验结果对高压天然气管道火灾事故处理及安全距离的制定具有参考价值。(图9,表5,参18)  相似文献   
5.
针对FLNG/FLPG装置区别于常规FPSO以及陆上LNG工厂的关键和难点技术,以南海某深水气田为研究目标,开展了FLNG/FLPG装置液化工艺方案优化分析,提出了具有自主知识产权的CO2预冷双氮膨胀的海上FLNG液化工艺。对影响该工艺流程性能的关键参数进行了优化,分析了该工艺对于海上FLNG装置的适应性。结果表明:二级制冷工艺用于海上FLNG装置的天然气预冷过程,当二氧化碳一级制冷温度在-20℃左右,二级制冷温度在-50℃左右,氮气循环压缩机出口压力取8MPa,两级氮膨胀制冷分界温度取-98℃,海水换热温差在8℃左右,单列总功耗为6.258×10-4kw,液化率为93.7%,比功耗为0.3271kW·h/m3。该工艺安全性高、流程简单、设备紧凑、经济性较好,具有较好的海上适应性。(图6,表4,参8)。  相似文献   
6.
【目的】调压系统作为连接长输管道与城镇燃气管网的关键环节之一,在实现“氢进万家”中发挥着重要作用,然而氢气与天然气的物性差异会影响调压的工艺控制效果。【方法】采用纯氢/掺氢天然气减压调压实验与调压动态模拟相结合的方式,以稳压精度、响应时间、适用度函数作为判定减压调压系统稳压效果的依据,对掺氢比、流量波动周期、下游流量变化幅度、管输压力及PID参数进行了敏感性分析。【结果】(1)系统波动越频繁、气体流速越大,导致系统受到扰动后波动幅度越大,减压调压系统越不易实现稳压,需对管输纯氢或者掺氢天然气的高流速运动进行限制。(2)调压系统流量有正弦变化的波动,以稳压精度±1.5%为要求,开展减压调压实验时,PID比例参数、积分参数设定在1~2范围时,可基本实现纯氢/掺氢天然气在城镇燃气管道压力范围内的调压。(3)当管输气体流速相同时,纯氢的瞬时波动较天然气更为明显,控制系统的响应时间、适应度函数均随掺氢比的增大而逐渐增加;纯氢的压力瞬时波动可达到纯甲烷的1.15倍,控制系统的响应时间、适应度函数也分别增大为纯甲烷的1.13倍、2.68倍,当氢气与甲烷为相同比例参数、积分参数时,含氢气体更难实现稳压...  相似文献   
7.
LNG浮式储存与再气化装置(Floating Storage Regasification Unit,FSRU)的建设周期短、装置灵活性高,其再气化模块是LNG-FSRU的重要功能模块,中间介质气化器(Intermediate Fluid Vaporizer,IFV)则是LNG-FSRU关键设备之一。基于LNG-FSRU中间介质再气化工艺现状,选择4种中间介质与2种加热源进行组合,确立8种再气化工艺流程,利用Aspen HYSYS软件建立再气化工艺流程模型,对再气化工艺进行敏感性分析。模拟结果表明:以丙烷为中间介质的整体式海水加热再气化工艺所需的海水流量及丙烷循环量较低,气化器结构紧凑、经济性好,其可作为LNG-FSRU再气化工艺的首选;当海水温度较低时,可采用海水和蒸汽联合加热的再气化方式。研究结果可为LNG-FSRU再气化系统的设计提供参考。  相似文献   
8.
氢能产业链及储运技术研究现状与发展趋势   总被引:1,自引:0,他引:1  
在积极应对全球气候变化、加快绿色低碳发展的大背景下,氢能作为能源载体和潜在燃料而备受关注,其与化石燃料不同,可以真正实现碳中和。围绕氢能输送与应用,分析氢能全产业链:制备、储存、输送、加注以及终端应用一系列工艺的研究现状,梳理氢能输送及应用涉及的关键技术问题,明确未来发展趋势并提出建议。分析表明:国内外针对氢能应用相关技术的研究已取得一定进展,但受限于技术成本及安全性等瓶颈因素,氢能暂未得到大规模应用。未来,应针对氢能产业链关键环节开展核心技术攻关,加速氢能产业发展,实现经济、安全、高效的氢能供给。(图8,表5,参97)  相似文献   
9.
为规范、准确地比较分析通道结构对换热器流动换热特性的影响,选择直线形、Z形、S形及翼形通道印刷电路板式换热器(Printed Circuit Heat Exchangers,PCHE),采用Fluent稳态模拟方法,以超临界LNG为工质,以相同单位体积换热面积及通道长度为标准建立数值模型,分析4种通道结构在不同进口温度、质量流量及操作压力下的换热与压降性能,以及局部流动换热特性的变化规律。结果表明:高进口温度、大流量、低压力下的通道具有更好的换热性能,Z形通道换热能力最强,S形通道压降最高,翼形通道综合换热性能最强;通道内流体单位面积换热量在拟临界点附近会产生剧烈波动与回升,沿程压降随流速和通道结构的不同呈不同形式增长。研究成果可为浮式液化天然气设施换热器选取与通道内部结构改进提供理论依据。(图10,表1,参20)  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号