首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  1篇
综合类   1篇
  2005年   1篇
  1997年   1篇
排序方式: 共有2条查询结果,搜索用时 5 毫秒
1
1.
The presence of phosphate retards the transformation of ferrihydrite into crystalline products. Increasing phosphate from 0 to 1 mole % results in an order of magnitude decrease in the rate of transformation of ferrihydrite at pH 12. Levels of phosphate of ~1 mol % suppress the formation of goethite (α-FeO(OH)) and result in the formation of a product consisting ofη-Fe2O3. Higher levels of phosphate result in the ferrihydrite remaining amorphous, even after several hundred hours. Phosphate prevents formation of goethite by hindering the dissolution of ferrihydrite rather than by interfering with nucleation and growth of goethite in solution. The transformation rate of pure ferrihydrite is also strongly inhibited in the presence of dissolved phosphate. This is due to surface complexation. The transformation rate was measured at temperatures of 60 °C and 70 °C. The rate of transformation was found to be described by either (i) a solid-state reaction equation for powdered compacts or (ii) a zero-order reaction controlled by desorption. The transformation of the ferrihydrite matrix was accompanied by the loss of the phosphate trace component. X-ray diffraction indicates that no solid solution involving phosphate substitution intoη-Fe2O3 is formed. Transmission electron microphotographs of the original precipitates containing phosphate confirm the presence of the phosphate and demonstrate its involvement in linking together extremely small particles of ferrihydrite.  相似文献   
2.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号