首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  7篇
  2020年   1篇
  2009年   1篇
  2008年   1篇
  2006年   2篇
  2005年   2篇
排序方式: 共有7条查询结果,搜索用时 46 毫秒
1
1.
Journal of Soils and Sediments - To understand the impact of geochemical sedimentation history for arsenic (As) distribution in the sediment profiles of the Hetao Basin, we (1) evaluated sediments...  相似文献   
2.
3.
4.
We undertook what we believe to be a unique survey of the natural abundances of 13C and 15N in urban soils and plants in Karlsruhe (Germany), a European city of average size. We found broad patterns of these abundances in both soils and plants, which reflected geology and land use. In contrast with studies on smaller areas (showing the direct effect of human activities), our study first determined the extent to which the abundances correlated with land use or underlying geology and then assessed how we could further test such relationships. The spatial pattern of δ13C in surface soil correlated with that of the underlying parent material; construction activities superimposed a secondary signal. Maize cultivation was a source of less negative soil δ13C, whereas the C3 vegetation is a source of more negative soil δ13C. There was a footprint of less negative plant δ13C in the industrial and port areas; plant δ13C downwind of the city was less negative than upwind, which might relate to atmospheric pollution from the port area or to differences in soil properties. There was no significant effect of wind direction or geology on soil or plant δ15N, which was correlated mainly with land use. The largest soil δ15N was under agriculture and the smallest under woodland. The abundance of 15N in inner-urban soil and plants was intermediate between those of agriculture and forests. This study represents a major advance in the use of stable isotope geochemistry in understanding urban environments.  相似文献   
5.
The present study was carried out to analyse and identify relationships among stream water chemistry, land use, and geology in Baden-Württemberg, a federal state in the south-west of Germany. The investigation is based on data from 88 monitoring stations, which cover almost the whole area of Baden-Württemberg. The database on water chemistry includes 21 parameters such as major cations, anions, heavy metals, dissolved organic carbon, pH, acid neutralization capacity, and conductivity. The study area is classified into 16 different land use categories and 12 types of geological formations. Using multivariate statistical methods (factor analysis), the relationships among different parameters were revealed by identifying ten uncorrelated factors. The data analysis indicates a complex interaction among stream water chemistry, lithologic composition of the geological formations, and land use type, with an intricate fingerprintings of the different parameters. The most important factors in terms of the represented variance are the main mineralization of the stream water (due to interaction with the geological underground) and anthropogenic nutrients introduced by different agricultural activities. Based on the results of factor analysis (factor score), the stream water chemistry is regionalized using a Geographic Information System (ArcView).  相似文献   
6.
Background, aim and scope  Urban systems are hot spots of environmental pollution caused by manifold anthropogenic activities generating traffic-related, industrial and domestic emissions. Besides air, soil and groundwater pollution, pollution of surface water systems is of major concern because they are often (ab)used to export waste of various consistence out of urban areas and become contaminated on varying scales. The Gironde Estuary (southwest France) is affected by various anthropogenic contaminations derived from historic polymetallic pollution mainly due to former mining and ore-treatment and, additionally, from agriculture and urban areas. Although detailed knowledge is available on the impact of mining and anthropogenic activities on the water quality of the Gironde Estuary, almost nothing is known on the urban impact, even though the Garonne Branch which is one tributary of the Gironde system crosses the large urban agglomeration of Bordeaux. The present work links urban geochemistry and estuary research and aims at evaluating the mobility of potentially toxic trace elements (Cd, Cu, Zn, V, Co, Mo, Pb) associated with urban particles under estuarine conditions owing to the particles' role as potential vectors transporting urban pollutants into the estuary. For this, environmentally available fractions of trace elements in representative urban particles (urban dust, road sediment, riverbank sediment, construction materials) from the city of Bordeaux were extracted by natural estuarine waters of varying salinities and compared to commonly applied HNO3 extractions. Materials and methods  For the assessment of the urban particles' contribution to the pollution of the Gironde/Garonne system, various particle types were sampled in Bordeaux: road sediments, urban bulk deposition, construction materials (concrete, asphalt, tile and gravel) and flood sediments. Potentially environmental available fractions of Cd, Cu, Zn, V, Co, Mo and Pb were extracted by means of concentrated HNO3, estuarine freshwaters and waters of two different salinities (S = 15 and S = 31). Analysis of trace elements was carried out by means of quadrupole inductively coupled plasma-mass spectrometry. Furthermore, single particles from road sediments were characterised with scanning electron microscopy (SEM). Results  SEM analysis clearly showed that some particles contained fairly high concentrations of potentially toxic trace elements. Extractions of materials investigated by varying acidities and salinities documented that the potentially bioavailable fractions extracted by concentrated HNO3 may cover wide concentration ranges. Natural estuarine waters of various salinities (S = 0.5; S = 15; S = 31) extracted high proportions of Co, Ni, Cu, Zn and Cd from urban particles, especially for high-salinity water (S = 31). Extractions with freshwater revealed the lowest concentrations of desorbed trace elements. Particulate Mo, Pb and V showed similar or lower mobility in saline water compared with freshwater, depending on the sample type. Discussion  Trace element mobility in estuarine waters varied according to the type of urban particles and depended on salinity for Co, Ni, Cu, Zn and Cd. This is of high importance for towns located directly at the coast or for cities like Bordeaux, where water courses crossing the agglomerations are connected to saline water masses. Since trace elements desorbed from particles in saline waters may become highly bioavailable, they bear a potential risk for organisms. Comprehensive studies on the behaviour of urban particles in estuarine waters and the related potential environmental impact are still missing. Conclusions  Saline waters mobilise relatively high amounts of Co, Ni, Cu, Zn and Cd from urban particles suggesting considerable metal fluxes from riverine urban systems into coastal waters. Although estimates of trace metal inputs by urban bulk deposition (urban dust) and other types of urban particles are preliminary for Bordeaux and may bear important uncertainties due to several assumptions and extrapolation to the annual timescale, the orders of magnitude are probably realistic. Thus, these fluxes are not negligible and need (1) further and improved observation and (2) to be taken into account in both mass budgets at the estuary scale and emission control strategies. Recommendations and perspectives  New approaches combining geochemical and mineralogical characterisation of single urban particle types help identify their role in metal emission into the environment and develop potential limitation strategies (e.g. the ban of priority pollutants in tyres, etc.). Therefore, prioritisation of urban particle sources in terms of fluxes, reactivity of associated pollutants and feasibility of emission reduction is strongly recommended. Coastal cities should integrate extractions of urban particles with saline water into their environmental monitoring programs owing to the fact that saline conditions might cause efficient desorption of potentially toxic trace elements. In continental cities, winter salting is likely to induce intense mobilisation of metals from road sediments that may then reach the aquatic environment, instead of being retained in runoff decantation reservoirs followed by subsequent disposal/treatment with road sediments. However, also particles from continental cities reach coastal waters via rivers and have to be assessed with respect to trace metal desorption under various salinities. There is a strong need for the quantification of fluxes and for the identification of carrier phases and reactivity of metals exported from urban areas to aquatic systems.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号