首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
  2篇
  2012年   1篇
  2007年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
Knowledge of differentiation of pollutants in urban runoff between dissolved and particulate matter is of great concern for a successful design of a water treatment process. Seasonal variations in pollutant load are of equal importance. Ten metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, and Zn), as dissolved and particulate bound, was studied in the runoff from a major urban highway during a winter season and its following summer. Studded tyres and winter salting were expected to have an impact on the runoff water quality. The dissolved part of Al, Cd, Co, Cr, Mn and Ni was significantly higher in winter in comparison with summer (p?<?0.01). For Fe, however, the dissolved part was lower during winter. No significant difference was found for Cu, Pb and Zn between the two seasons. The mass concentration (mg kg?1) for all metals was significantly higher over the summer except for Al and Co, which showed a higher mass concentration during the winter. The concentration of selected metals vs. total suspended solids (TSS) showed a linear relationship (r 2?>?0.95) during winter runoff events except for Cd. A good correlation (r 2?>?0.90) was also found for the summer period for Al, Cu, Fe, Mn, Ni and Zn. It is suggested that the metal pollutant load during winter could be assessed indirectly by measurement of TSS.  相似文献   
2.
The environmental impacts of 16 different contaminants originating from the E18 Highway (17,510 annual average daily traffic) were studied over the initial months of the highway??s operational life. Investigative methods used included electrical resistivity surveying, water chemistry analyses, soil analyses, distribution modeling, and transportation modeling of contaminants. The study conclusively showed a year-round infiltration due to melting of the snowpack from road salt, and a strong preferential, anthropogenic pathway due to increased hydraulic conductivities of road construction materials relative to in situ soils. The resistivity surveys produced values well below the expected values for the highway materials, indicating increased ionic content within the unsaturated zone. Time lapse resistivity modeling showed a clear downwards spreading of contamination from the roadway to subsurface distances greater than 5?m. Elevated concentrations of nearly every studied contaminant relative to baseline values were observed, with many metal concentrations within the snow pack averaging values in excess of the Swedish Environmental Protection Agency??s groundwater limitations. Distribution modeling demonstrated a potential offset of peak values from the road surface due to plowing and splash transport processes, and indicated different distribution behavior during winter months than during summer months. One-dimensional transport modeling demonstrated the importance of adsorption and other retentive factors to the migration of contaminants to groundwater and provided an estimate for potential long-term contaminant concentrations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号