首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
  2篇
综合类   4篇
畜牧兽医   1篇
  2023年   1篇
  2022年   4篇
  2019年   2篇
排序方式: 共有7条查询结果,搜索用时 31 毫秒
1
1.
[目的]解析农林间作水分高效利用机制。[方法]以西北极端干旱区典型模式枣棉间作为研究对象,通过设置不同棉花种植行数和棉花株距研究空间布局对枣棉间作复合系统水分利用效率的影响。[结果]与单作相比,枣棉间作具有明显提高产量和土地利用率的优势,种植行数对间作产量的影响效应显著。间作条件下耗水量高于对应单作,但也能显著提高水分利用效率,种植行数与棉花株距互作作用对间作水分利用效率的产生效应,通过空间布局能够协调枣棉间作种间关系,提高水分高效性。[结论]枣棉间作群体较单作更能够显著提高水分利用效率,在农林复合群体中,林木根系一般较深,能充分利用土壤深层营养物质和水分,农作物则利用浅层土壤中的养分和水分,由于根系垂直生长呈多波顺次递推特点,使根系生长中心和吸收中心交错出现,提高了养分和水分的利用效率。  相似文献   
2.
2020—2021年通过大田试验,以红枣单作(CK)和苜蓿单作(AM)为对照,设置3种间距的红枣间作苜蓿种植模式:M1(间距0.5 m)、M2(间距1 m)、M3(间距1.45 m),研究了不同间距配置下红枣间作苜蓿土壤团聚体有机碳、全氮及产量的变化特征。结果表明,土壤机械稳定性团聚体以大团聚体为优势团聚体,主要集中在0.25~1 mm粒级,变幅为23.26%~28.01%;较之CK处理,M1、M2、M3间作处理0~60 cm土层≥0.25 mm土壤机械团聚体含量和水稳定性团聚体含量分别提高了12.84%、16.46%、13.75%和42.57%、43.50%、32.13%。间作处理显著提高了0~60 cm土层土壤机械稳定性团聚体和水稳定性团聚体平均质量直径,分别比CK提高了19.53%、23.58%、14.29%和21.31%、21.50%、10.80%。不同种植模式下有机碳、全氮含量大小排序分别为M1>M2>AM>M3>CK、M2>M1>AM>M3>CK。不同粒级团聚体中<0.25 mm微团聚体有机碳、全氮含量最高,1~2 mm粒级有机碳、全氮含量最低;M1、M2处理显著提高了0~60 cm土层土壤有机碳、全氮含量。AM处理鲜草产量最高并显著高于其他处理,各间作处理中M2产量最高,M3产量最低;间作苜蓿对红枣产量无影响。间距1 m的红枣间作苜蓿处理优化了土壤结构及养分,且保证了作物产量之间的平衡,为最适的苜蓿间距配置模式。  相似文献   
3.
通过大田试验,采用红枣(Ziziphus jujuba)?||苜蓿(Medicago sativa)间作(JA)、苜蓿单作(SA)、红枣单作(SJ)?3种种植模式,研究了不同种植模式对土壤养分以及土壤微生物性状的影响.结果表明:在间作条件下,土壤pH总体表现为"先下降,后升高"的变化趋势;土壤碱解氮含量表现为SA?>?...  相似文献   
4.
5.
合理的枣棉间作种植模式有利于光资源的利用和产量的提高。为探明枣棉间作系统中棉花产量形成的光合生理机制,筛选出适于南疆的枣棉间作最优种植模式,以枣树-棉花间作模式为研究对象,设离树间距1.4 m(M1)、1.0 m(M2)、0.5 m(M3)3个间作处理,以单作棉花为对照(CK),对棉花冠层上方光合有效辐射(PAR)、棉花叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(Gs)、胞间CO2浓度(Ci)5个光合指标及水分利用效率(WUE)和产量进行研究。结果表明,各处理冠层PAR在花铃期达到最大,间作系统冠层PAR总体低于单作,且随离树间距的增加而增大,M3处理PAR最低,分别较M1、M2处理低10.0%和9.5%;间作总体上提高了棉花的Pn,降低了Tr和Ci,M3处理的Gs在2020年最大,2019年最小,并且M3处理的棉花光合能力总体优于其他处理;枣棉间作种植模式有利于提高棉花群体水分利用效率,M3处理的WUE最大,2019和2020年较CK分别提高了52.8%和50.4%;M3处理单位面积内棉花产量最高,分别较CK、M1、M2高18.2%、85.9%和37.0%。灰色关联度分析表明,M3处理表现最优,主要生育期内等权关联序和加权关联序位次总体排第一。综上,适宜的间作种植模式为M3处理。本研究结果为南疆枣棉间作种植模式优化配置提供了理论依据和技术支撑。  相似文献   
6.
以小麦品种中育1123、棉花品种豫早棉9110为试验材料,设置3种种植模式:棉花单作(MC)、小麦棉花套作(WIC)、麦后直播棉花(WDC),通过传感器检测灌溉前后地下10~110 cm土壤含水量来比较3种种植模式土壤水分空间变化差异。结果表明,棉花苗期,灌溉前后的土壤水分变化量为0.000~0.125 m3/m3,WIC处理在地下10~30 cm处水分波动变化相对较小。棉花蕾期,灌溉前后的土壤水分变化量为0.000~0.180 m3/m3,其中WIC处理土壤水分变化达到最高,为0.180 m3/m3,WDC与MC处理土壤水分波动差异小。棉花花铃期,WIC和WDC处理地下30 cm处灌溉后的土壤水分差异维持在0.060~0.080 m3/m3之间,MC处理土壤水分在地下30~50 cm处发生聚集。棉花吐絮期土壤水分变化范围为0.190~0.320 m3/m3,表层土壤水...  相似文献   
7.
南疆地区间作红枣苜蓿生理生态效应研究   总被引:1,自引:1,他引:0  
本试验共设置了枣树单作(CK)、距离两侧红枣0.50 m种植苜蓿(A)、距离两侧红枣1.00 m种植苜蓿(B)、距离两侧红枣1.45 m种植苜蓿(C)4个处理,研究不同种植模式对间作系统生理生态效应的影响。结果表明,在不同种植模式下,间作系统对气温有着良好的调节作用,其中A模式下苜蓿净光合速率较高;间作复合系统对浅层地温有高温季节降温、低温季节增温的作用,不同时期土壤的物理性质(土壤含水量、土壤容重)也发生相应的变化,对降低土壤的无效蒸发有重要意义;在苜蓿全年生产中,A模式产量最高;在灌溉定额的条件下,A模式下作物的贮水量最高,水分利用率也最高,说明合理的间作距离可以提高作物水分利用率。在不同种植模式中,A模式对生态系统中光温的利用相对适宜、土壤容重变化较为平稳、水分利用率最高,且产量也达到最高。综合衡量间作系统内的光、温、水分等的生理生态效应可以得出,A种植模式为红枣间作苜蓿的最佳种植模式。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号