首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
  国内免费   1篇
农学   1篇
  1篇
综合类   2篇
  2022年   3篇
  2021年   1篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
  【目的】  明确外源芸苔素甾醇类化合物 (brassinosteroids, BRs) 中14-羟基芸苔素甾醇 (14-hydroxylated brassinosteroid, 14-HBR) 对干旱胁迫下冬小麦穗花发育成粒的调控效果,为小麦大田生产减轻干旱胁迫危害提供技术支撑。  【方法】  以大穗型品种周麦16 (ZM16) 和多穗型品种豫麦49-198 (YM49-198) 为试验材料,试验处理包括中等干旱条件下 (0—40 cm土层相对含水量47.38%~61.91%),在小麦拔节后20天设置叶面喷施0.05 μmol/L的14-HBR (DBR) 和喷施清水对照 (DCK);拔节期正常灌水条件下 (灌水750 m3/hm2) 喷清水对照 (WCK)。调查两品种小麦幼穗可孕小花发育动态,不同器官干物质积累和碳氮代谢动态,小麦产量及其构成因素。  【结果】  两品种3个处理的每穗小花数均表现为WCK > DBR > DCK趋势,干旱胁迫下喷施14-HBR与喷施清水相比,能有效降低小花退化和败育,增加可孕小花成粒数,但其效果仍不能完全抵消中等缺水的胁迫效应。喷施14-HBR处理 6天后,两品种穗器官和非穗器官干物质重和氮素积累量、穗可溶性糖含量、穗/叶可溶性糖值、穗/非穗器官氮积累量值、穗器官的碳/氮 (C/N) 值均高于干旱对照处理,而穗/非穗器官干物质值、叶片可溶性糖含量、叶器官C/N值则均低于干旱对照处理。与干旱对照处理相比,两品种的灌水和喷施14-HBR处理均能显著提高穗粒数和产量,穗粒数增幅分别为50.69%和16.04% (ZM 16),38.98%和15.07% (YM 49-198);产量增幅分别为99.44%和28.93% (ZM 16),92.86%和26.86% (YM 49-198);喷施14-HBR处理和干旱对照处理的穗数和千粒重差异不显著。就产量三因子调控效应而言,干旱条件下喷施14-HBR主要是通过提高穗粒数进而增加产量,且对大穗型品种ZM16的增粒增产效果好于多穗型品种YM49-198。  【结论】  干旱胁迫下在小麦小花退化前外源喷施14-HBR可以促进源器官物质生产,调节穗和叶可溶性糖,穗和非穗器官干物质重及氮素的分配,降低叶的C/N值而增加穗的C/N值,增强糖和氮从叶源器官向穗库器官的转运能力,进而优化穗花发育,提高干旱耐受性。  相似文献   
2.
白粉病严重危害小麦生长及制约产量形成,精确监测该病害对精确防控及保障国家粮食安全具有重要意义。在小麦孕穗、开花和灌浆期使用地物高光谱仪获取小麦冠层光谱数据,利用一阶导数(FD)、二阶导数(SD)、对数变换(LOG)、倒数变换(1/R)和连续去除法(CR)对原始光谱(OR)进行光谱变换,基于CARS算法和SPA算法相结合对五种变换的光谱数据和原始光谱进行特征波段提取,进而利用偏最小二乘回归(PLSR)、岭回归(RR)和高斯过程回归(GPR)建模方法确立小麦白粉病病情指数(mDI)监测模型。结果表明,一阶导数在Pearson相关性、两波段优化组合以及机器学习方法建模中,综合表现最好,是一种处理病害光谱数据的较好预处理方法。经过光谱数据变换后,再使用CARS-SPA算法可以更有效的提取特征波段,特征波段为411、450、476、543、561、594、624、671、726、780、835和950 nm。在不同机器学习建模方法对比中,高斯过程回归(GPR)模型表现最佳,其次为岭回归(RR)和偏最小二乘法回归(PLSR)。其中,一阶导数结合GPR模型的估算精度最高,建模集和验证集的平均R~2为...  相似文献   
3.
【目的】 开花后穗部器官成为小麦生长中心,保证穗部充足的氮素营养是籽粒产量和蛋白品质形成的基础,精确诊断穗氮营养对预测评价产量和品质具有重要意义。【方法】 选用周麦27和豫麦49-198为材料,在大田条件下设置3个灌溉条件(W0:雨养、W1:拔节期浇水1次、W2:拔节和开花各浇水1次)和5个施氮水平(0(N0)、90 kg·hm-2(N6)、180 kg·hm-2(N12)、270 kg·hm-2(N18)和360 kg·hm-2(N24)),于小麦开花后不同的灌浆时段采集各处理小麦穗器官干物质及氮素含量数据,构建不同灌溉条件下冬小麦穗器官的临界氮稀释(Nc)曲线,并于成熟期测定籽粒产量和蛋白质含量。【结果】 在同一灌溉条件下,随着施氮量的增加,穗部干物质及氮含量均增加;不同灌溉条件下的穗部临界氮浓度与生物量间均符合幂指数关系,不同灌溉条件的模型间存在差异(W0: Nc=2.58 DM-0.242; W1: Nc=2.92 DM-0.24; W2: Nc=3.10 DM-0.231)。氮营养指数(NNI)在不同灌溉条件下均随着施氮量的增加而增加,适宜施氮量因灌溉条件而异,雨养条件为180—270 kg·hm-2,灌溉条件为270 kg·hm-2左右。相对产量(RY)与NNI之间显著相关,具体表现为线性+平台特征,在雨养条件下NNI为1.01时,RY获得最大值;而在灌溉条件下NNI为0.97时,RY获得最大值。籽粒蛋白含量与NNI之间呈显著的线性定量关系,灌溉导致蛋白质含量有所降低。【结论】 确立的穗器官Nc及NNI模型,能够有效指示不同水氮条件下小麦氮素丰缺变化,实时评价产量状况,准确预测蛋白质含量,为小麦生育后期的田间及收储管理提供参考和依据。  相似文献   
4.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号