首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  2篇
综合类   3篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2019年   1篇
排序方式: 共有5条查询结果,搜索用时 8 毫秒
1
1.
作为世界上最大的农业生产国和温室气体排放国,我国承诺力争到2030年前实现碳达峰,2060年前实现碳中和。国家“双碳”目标给农业生产带来很大的减排挑战,因为农业源温室气体排放约占我国碳排放总量的14%。粮食生产是农业源非CO2温室气体的主要排放源,归因于过量灌溉和施肥引起的稻田甲烷(CH4)和土壤氧化亚氮(N2O)排放。在碳达峰后,粮食生产温室气体的排放占比和减排重要性将越来越大。我国粮食生产究竟能否实现碳中和,以及如何实现碳中和仍不明确。本文综述了我国粮食生产碳排放的源汇效应和时空特征,总结了稻田CH4和土壤N2O减排以及农田土壤固碳的有效措施,解析了固碳减排之间的“此消彼长”效应和应对策略,明确了粮食生产实现碳中和的潜在路径,并对未来固碳减排的研究方向进行了展望。  相似文献   
2.
作为世界上最大的水稻生产国以及氮肥消耗国,我国农业生产过程排放了大量温室气体甲烷(CH4)和氧化亚氮(N2O)。因此,减少农田土壤CH4和N2O排放以及提高土壤碳库储量(简称“固碳减排”)对于缓解全球气候变暖以及确保粮食安全至关重要。近20年来,我国在农田土壤固碳减排方面进行了大量研究,总结出了一系列行之有效的固碳减排措施。本文综述了我国目前针对农田土壤温室气体减排以及土壤有机碳固定的有效措施,并对未来农田土壤固碳减排方向进行了展望。  相似文献   
3.
作为世界上最大的发展中国家之一,中国粮食生产对于全球粮食安全以及气候变化都具有至关重要的影响。近二十年来,大量研究表明粮食作物田间生产过程是温室气体甲烷(CH4)和氧化亚氮(N2O)的重要排放源。伴随着生命周期评价法(碳足迹)在农业领域的运用,越来越多的研究表明,除了田间生产过程以外,农业生产资料生产过程排放的温室气体同样不可忽视。本文综述了我国在粮食作物生命周期生产过程中温室气体排放的研究,提出了针对性的温室气体减排措施,并对我国未来农作物生产过程的碳足迹研究进行了展望。  相似文献   
4.
我国农田化肥氮用量高,造成较多肥料氮土壤残留,残留肥料氮既可被后季作物吸收利用,也可迁移进入环境。稻麦轮作是我国长江中下游农业区代表性种植制度,然而稻麦轮作农田土壤残留化肥氮的作物后效及去向目前尚不清楚。利用15N示踪长期试验,连续追踪了2004年小麦季施用30%的15N标记尿素后其土壤残留15N在之后17个稻麦轮作年的变化动态及被后季作物吸收利用特征。试验起始小麦季设100 kg?hm-2(N100)和250 kg?hm-2(N250)两个施氮量处理,后续作物均不再施用氮肥。结果发现,34.5%~37.9%施入氮被当季小麦吸收,随后各轮作年稻麦作物吸收残留氮量随年限增加呈指数下降;17年中有12.2%~15.8%残留氮被后季作物吸收,其中,水稻对残留氮吸收能力较强,为9.2%~11.8%,小麦为3.3%~4.0%;观测期内化肥氮累积利用率为50.1%~50.3%。氮肥施入小麦当季,0~20 cm土层残留为22.9%~33.5%,之后逐年减少;17年后降至7.8%~9.8%,但仍占0~100 cm土层氮残留量(9.9%~13.4%)的73.5%~78.5%。同位素质量平衡估算的观测期内氮肥累积总损失率为36.3%~39.9%,与基于当季小麦氮肥利用率和0~20 cm土壤残留率计算得出的当季化肥氮总损失率32.0%~39.2%接近。作物籽粒、秸秆及土壤15N丰度在观测期内均随时间呈指数递减;根据预测结果,不施氮下其降至15N自然丰度背景值仍需28~37年。上述结果表明,稻麦农田化肥氮损失主要发生在当季,土壤残留后效持续时间长,但再迁移进入环境数量低。协同化肥氮当季损失的高效阻控和土壤残留的有效调控应是稻麦农田氮肥优化管理的关键环节。  相似文献   
5.
建档立卡贫困人口的脱贫问题一直是精准扶贫工作的重点和核心。以贵州省都匀市430户建档立卡贫困人口为研究对象,通过对430户建档立卡贫困户的家庭劳动力情况、住房情况和医疗卫生情况等进行分析。结合多维贫困理论和贵州省精准扶贫实际,对建档立卡贫困农户现有帮扶措施的有效性和精准性进行分析与评价,并针对当前帮扶工作中存在的问题提出解决措施与建议。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号