首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
基础科学   1篇
  4篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
微咸水滴灌条件下沙穴种植的土壤水盐二维空间分布规律   总被引:2,自引:1,他引:1  
河套灌区重度盐碱土具有结构性差、导水率低的特点,且该地区淡水资源短缺,为提高土壤水入渗性能,合理开发利用微咸水资源,可在滴头下方设置沙穴并利用微咸水灌溉。为探明不同矿化度微咸水滴灌的沙穴种植条件下二维土壤水盐分布规律,采用室内50 cm×50 cm二维土槽模拟试验,设置蒸馏水(0 g/L),2.0,3.0,4.0 g/L 4种不同矿化度处理,试验历时100 h。结果表明:在深度5 cm距滴头两侧15~20 cm及滴头下方25 cm的盐碱土处,土壤含水量较高,沙土土壤含水率随着矿化度的增加而增加,盐碱土土壤含水率随着矿化度的增加呈现先增加后降低的趋势,采用3.0 g/L灌溉水滴灌时,盐碱土含水率最大(变异系数为7.64%),说明利用3.0 g/L微咸水灌溉可有效提高沙穴种植条件下土壤含水率;入渗100 h后盐分主要聚集在滴头下方25~30 cm处,沙穴结构试验中,灌溉水矿化度为4.0 g/L的情况下土壤平均电导率最大(变异系数为50.59%),水平方向盐分淋洗效果优于垂直方向,且灌溉水矿化度越低,淋洗效果越显著,蒸馏水处理脱盐率为13.99%,灌溉水矿化度为2.0,3.0,4.0 g/L时积盐率分别为7.93%,14.57%,30.05%,脱盐半径随矿化度的增大而减小,3.0 g/L与2.0 g/L积盐量差异不显著(P=0.460>0.05),与4.0 g/L处理下积盐量差异显著(P=0.024<0.05)。结合土壤水盐空间分布规律,利用3.0 g/L微咸水可提高盐碱土土壤含水率,控制沙穴种植结构土壤积盐量,提高根系层土壤保水性。  相似文献   
2.
[目的]探究引黄春灌对区域浅层地下水动态及地下水理化性质的影响.[方法]通过监测试验区盐碱地春灌前后地下水位、八大离子(Na+、K+、Ca2+、Mg2+、HCO3-、Cl-、SO42-、CO32-)质量浓度、地下水EC值、pH值、土壤电导率等指标,运用数理统计和水文地球化学分析的方法,分析春灌前后地下水动态及春灌后地下...  相似文献   
3.
为探明河套灌区盐渍化土壤盐分和有机质含量分布规律,选取巴彦淖尔市五原县盐渍化土壤典型区域作为研究区,采用区域土壤信息定点监测,选取 149个采样点,获得各土层土壤样本,并结合经典统计学、地统计学、空间插值等方法,研究盐渍化土壤盐分和有机质含量空间变异特征。结果表明:随着土层深度的增加,土壤有机质含量与土壤盐分含量的相关性逐渐增加,在深层土壤间盐分对有机质含量的影响大于表层,且在 40~ 60 cm影响最显著。研究区各层土壤盐分的最优半方差函数模型为球状模型,土壤有机质的最优半方差函数模型为高斯模型。规模化盐碱地改良后,0~ 20、20~ 40、40~ 60 cm土壤盐分结构比(表示随机因素引起的空间变异占系统总变异的比例)上升 2.35、6.72、1.94个百分点,0~ 20、20~ 40 cm土壤有机质结构比分别上升 3.54、3.93个百分点,土壤盐分和有机质结构比整体较改良前呈上升趋势,结构性增强,空间相关性增强,垂直方向上土壤盐分变异性强于有机质变异性。改良期内土壤盐分含量平均降幅为 0.574g/kg,土壤有机质含量平均增幅为 0.195 g/kg,耕层土壤盐渍化程度减弱,各层土壤有机质含量增加,作物生长安全区增大,研究区土壤环境显著改善。土壤盐分高值区(>6 g/kg)多位于地下水浅埋区的中部和东南部区域,改良后,研究区中部土壤盐分集聚特征仍十分显著,存在盐渍化加剧的风险,仍是盐碱地改良防治重点的区域。  相似文献   
4.
为探明河套灌区盐渍化半封闭小型灌域作物生育期土壤盐分和地下水变异规律,选取巴彦淖尔市五原县盐渍化土壤典型区域作为研究区。采用区域土壤—地下水信息定点监测法,选取149个采样点,30口地下水观测井,获得各项指标数据,并结合经典统计学、空间插值、相关性回归分析等方法,研究了土壤盐分及地下水动态空间变异性、不同深度土壤空间变化特征及其与地下水埋深相关性。结果表明:4—10月各土层土壤含盐量平均降幅为5.53%,研究区1 m深土壤处于脱盐状态,耕作层土壤盐分向深层土壤运移。地下水埋深主要影响因子为引黄灌溉水量、蒸发作用和研究区地势;在春灌期(4—6月)地下水矿化度平均值由2.81 g/L降至2.38 g/L,6—10月地下水矿化度平均值逐渐增加至2.66 g/L,地下水矿化度一般在春灌前期4—5月较大,春灌期较小,秋收后在二者之间。在春灌和作物生长双重抑盐作用影响下,0—20 cm土壤盐分平均值秋收后较春播前下降32.08%,生育期内土壤盐分向深层土壤(40—100 cm)运移,土壤盐分含量与土层深度成反比,且随土层深度增加对土壤盐分分布变化的影响逐渐减弱。0—20,20—40 cm土壤盐分在同时期大于4.0 g/kg的盐分分布面积在4月分别为85.63%,9.71%,在10月分别为42.37%,15.86%,40—100 cm随土层深度增加土壤盐分减小的趋势趋于平缓。随浅层地下水埋深的增大土壤盐分逐渐减小,采取有效措施将地下水埋深降低0.2 m,控制在1.8~2.2 m更佳。  相似文献   
5.
生物炭对冻融期盐渍化土壤水热肥效应的影响   总被引:1,自引:1,他引:0  
为探究施加生物炭对冻融期盐渍化土壤蓄水保墒、保温、保肥的作用,以盐渍化土壤为研究对象,连续2年在河套灌区开展田间小区原位冻融试验,设置生物炭用量为15 t/hm2(D15),30 t/hm2(D30),不施加生物炭(CK)3种处理。结果表明:在冻融条件下,0—40 cm土层较40—100 cm土层水分垂直分布规律明显、储水能力强;除在试验第1年的初冻期施加生物炭使0—40 cm土层储水量有所降低外,随生物炭施加时间的增长,生物炭的持水作用逐渐显现,其中与CK相比D30处理更有利于土壤水分保持。施加生物炭可以平抑冻融期土壤温度的变幅、降低融解期土壤温度变化的离散程度,较对照比,2年冻融期0—40 cm土层平均温度生物炭处理提高0.8~1.6 ℃,经过2年冻融过程各处理土壤冻结指数为CK>D15>D30,融解指数为D30>D15>CK。连续2年冻融期,生物炭的施入均丰富了土壤养分含量,不同程度地减少冻融各阶段0—40 cm土层养分流失,使冻融期土壤速效钾、碱解氮、速效磷含量增幅范围分别达到3.1%~38.1%,1.3%~44.6%,5.4%~80.4%,有机碳密度增加了2.0%~22.4%,其中以D30处理提升效果最为明显。施用生物炭改善了冻融期盐渍化土壤的水热肥状况,可为来年作物的生长繁殖提供良好的环境,生物炭用量30 t/hm2时施用效果较优。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号