首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   4篇
  8篇
综合类   15篇
农作物   1篇
畜牧兽医   1篇
园艺   1篇
  2024年   1篇
  2022年   2篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2008年   1篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
基于农户施肥和土壤肥力的黑龙江水稻减肥潜力分析   总被引:4,自引:0,他引:4  
【目的】 黑龙江稻田面积320多万公顷,为全国稻田面积最大的省份,10多年来水稻产量一直徘徊在7 000 kg·hm -2,也是我国稻田化肥用量(纯N 约150 kg·hm -2)最低的省份。在化肥零增长的背景条件下,黑龙江是否存在节肥潜力有待研究。 【方法】 调查水稻主产区农户施肥情况。2005年调查区域为五常、方正、木兰、宁安、庆安、铁力、尚志、阿城;2008年调查区域为密山、虎林、庆安、五常、宁安、方正、萝北、桦川、富锦和尚志;2015年调查区域为五常、方正、宁安、虎林和庆安。每个地点随机选择一个乡,每个乡随机选择2或者3个村,每村调查10户,共638户。2009—2010年,采集了黑龙江水稻主产区8万多个土壤样品,测定0—20 cm土层速效磷、速效钾养分含量。采用理论适宜施氮量法估算黑龙江稻田氮肥用量;依据作物养分需求量和稻田土壤养分状况,采用磷钾衡量监控方法,估算稻田磷、钾肥适宜施用量,在此基础上分析黑龙江省水稻减肥潜力。【结果】 2005、2008和2015年黑龙江水稻平均产量分别为6 427、7 593和7 142 kg·hm -2 ,3年平均产量为7 104 kg·hm -2。农户间产量差异较大,高低相差近5 000 kg·hm -2。稻田N、P2O5和K2O用量平均分别为141.0、56.6和51.6 kg·hm -2,N、P2O5和K2O用量高低相差均超过300 kg·hm -2,农户间施肥变异较大,盲目施肥问题突出。稻田土壤速效磷和速效钾的含量分别约为26和138 mg·kg -1。速效磷的变异超过了40%,不同区域间土壤肥力差异较大。70%以上的样品速效磷、速效钾含量处于较高水平。要达到7 500 kg·hm -2的产量水平,对应的理论适宜N用量为105 kg·hm -2,只有20%的农户实现了高产氮素高效,有70%的农户具有节肥潜力,可以节氮超过26%。通过节肥,每千克氮素生产的粮食可由50 kg提高到70 kg。按照目前的产量和土壤养分状况,稻田P2O5和K2O适宜用量分别为41.6和35.9 kg·hm -2,可以减量约30%。调研农户中,具有节磷和节钾潜力的农户分别约占总体的71%和72%,处于低产低效的农户均占总体的30%,节肥潜力最大。 【结论】 黑龙江作为全国施肥量最低的省份,有约70%的农户处于高产不高效或者低产低效水平,过量施肥问题突出,节肥潜力20%以上。  相似文献   
2.
稻米品质与人类健康息息相关,优质稻米的生产是当今的研究热点。文章探讨了寒地优质稻米发展的优势,从影响稻米营养成分的肥水条件入手,分析决定稻米营养成分的主要水分管理和氮素调控措施,并提出改善稻米品质的养分管理措施。  相似文献   
3.
绿菜花应选用花蕾颗粒小、颜色绿、生长势强、抗病性好的品种。  相似文献   
4.
协调水稻产量和品质的植株临界氮浓度的确定   总被引:1,自引:0,他引:1  
根据植株氮营养状况指导优质米生产具有重要意义。试验以五优稻4号为供试材料,以密度为主区(密度分别为每平方米18穴和25穴),氮量为副区(氮量分别为0、75、105、135 kg hm?2),测定水稻植株全氮、籽粒无机氮含量、水稻产量和品质等指标,以期为实现水稻丰产优质提供理论依据。结果表明:施氮量和水稻产量呈2次曲线关系,最高产量施氮量为113 ~ 119 kg hm?2,经济合理施氮量为110 ~ 116 kg hm?2;随着施氮量增加,各个时期水稻植株含氮量,收获期籽粒铵态氮和硝态氮含量显著提高,N105处理与N0处理间上述指标差异均显著(P < 0.05),而 N105和N135处理间只有籽粒无机氮含量差异显著;施氮后籽粒蛋白质含量有增加趋势,随着施氮量增加稻米食味值下降,N135处理食味降低超过10%(P < 0.05),其他处理间差异不显著。密度增加,水稻氮素积累量增加,产量提高了11.4%;稀植有利于提高地上部含氮量、籽粒铵态氮和硝态氮含量;稀植出米率提高了4.77个百分点(P < 0.05),食味值有降低趋势。根据肥料效应函数以及施氮量和植株含氮量关系函数,拔节期和抽穗期,D1密度下植株临界氮浓度分别为15.26 ~ 16.18 g kg?1和22.65 ~ 25.98 g kg?1,D2密度下对应值分别为11.71 ~ 12.94 g kg?1和20.73 ~ 23.24 g kg?1。上述结果表明,合理密植有利于水稻高产,氮量过高不利于水稻高产和优质。在水稻丰产和优质的情况下,氮肥用量在91 ~ 105 kg hm?2比较合适,抽穗期叶片含氮量24.82 ~ 25.98 g kg?1(D1)和22.18 ~ 23.24 g kg?1(D2)可以作为协同实现水稻丰产优质的诊断指标。  相似文献   
5.
【目的】土壤是影响作物产量和氮肥吸收利用的因素之一,深入研究南北方稻田土壤对水稻生长及氮效率的影响,以期为调控区域水稻高产优质提供参考。【方法】2018—2019年,以黑龙江省黑土型水稻土,江苏省乌栅土型水稻土为试验材料,在黑龙江省哈尔滨市进行水稻盆栽试验。每种土壤设置3个施氮水平,即N0:不施氮肥;N1:0.87 g N/pot(相当于150 kg N·hm-2);N2:1.74 g N/pot(相当于300 kg N·hm-2)。测定水稻分蘖、SPAD值、分蘖成穗率、土壤矿化氮量、水稻产量和氮效率。【结果】黑土型水稻土的早期分蘖对施氮有响应,分蘖数随施氮量增加而增加,而乌栅土型水稻土的分蘖在拔节期后才对施氮有响应。土壤对水稻分蘖的影响存在年际间差异,2018年土壤类型对分蘖数有显著影响,不施氮时乌栅土型水稻土的分蘖数比黑土型水稻土高4.41%—43.04%,而施氮后乌栅土型水稻土比黑土型水稻土的分蘖数低8.25%—12.98%;2019年黑土型水稻土的分蘖数多数高于乌栅土型水稻土4.41%—46.53%。两种水稻土的分蘖成穗率与叶片SPAD值在2018年有显著差异,乌栅土型水稻土的叶片SPAD值比黑土型水稻土高19.28%—21.19%,乌栅土型水稻土的分蘖成穗率比黑土型水稻土高23.89%—40.53%,2019年土壤类型对水稻分蘖成穗率与叶片SPAD值均无显著影响。28 d淹水培养试验表明,两种土壤的无机氮总量基本相同,乌栅土型水稻土的初始矿化速率比黑土型水稻土高,但后期矿化速率比黑土型水稻土低,黑土型水稻土的矿化势更高,有更大的矿化潜力。黑土型水稻土的AEN(氮肥农学效率)比乌栅土型水稻土高,而乌栅土型水稻土的PFPN(氮肥偏生产力)比黑土型水稻土高,乌栅土型水稻土的Y0/Nr(Y0为无肥区产量,Nr为施氮量)更高,供氮与施氮更加协调。2018年黑土型水稻土的REN(氮肥吸收利用率)和PEN(氮肥生理利用率)均显著高于乌栅土型水稻土,2019年土壤类型对REN和PEN无显著影响。【结论】土壤差异不是南北方稻田氮效率差异的决定性因素,氮效率差异是土壤、气候和品种等因素共同作用的结果。相对于黑土型水稻土而言,前期养分供应能力强的乌栅土型水稻土应减施基、蘖肥,适当增施穗肥,以保证后期供氮促进水稻高产。  相似文献   
6.
DA-6强化龙葵修复高镉污染土壤的作用   总被引:2,自引:0,他引:2  
于彩莲  刘波  徐鑫 《中国农业科学》2011,44(16):3485-3490
 【目的】研究二烷氨基乙醇羧酸酯(DA-6)对高镉污染土壤中龙葵生物量和镉提取量的影响,探讨DA-6提高龙葵修复镉污染效率的适宜浓度。【方法】采用盆栽试验方法,研究不同浓度的DA-6浸种和叶面喷施对龙葵生长和镉富集的影响。【结果】5、10、20、40 mg•L-1的DA-6浸种和叶面喷施使龙葵成熟期地上部分干重增加了8.69%—27.54%(P<0.05),镉浓度提高了2.62%—6.75%,总镉提取量增加了10.12%—36.31%(P<0.05);DA-6处理降低了苗期和成熟期龙葵叶片中的丙二醛含量,增强了苗期叶片中过氧化物酶活性,降低了成熟期叶片中过氧化物酶活性。在苗期、花期和成熟期,DA-6处理的叶绿素值(SPAD)都有增加趋势。【结论】5、10、20和40 mg•L-1的DA-6通过浸种和叶面喷施能提高龙葵对镉修复的效率,尤以20 mg•L-1的作用最为显著。  相似文献   
7.
低温胁迫下增施锌肥对水稻氮代谢与干物质积累的影响   总被引:3,自引:1,他引:2  
[目的]施锌是缓解低温胁迫对水稻伤害的有效途径之一,低温胁迫下研究增加施锌量对水稻氮代谢与物质积累的影响,为低温年提高水稻抗低温能力提供理论依据.[方法]采用三叶一心期水稻幼苗进行水培试验,设置低(Zn?0.08?μmol/L)、常规(Zn?0.15?μmol/L)、高(Zn?0.30?μmol/L)?3个ZnSO4·...  相似文献   
8.
  【目的】  探究实现水稻高产、优质和氮肥高效的密度与施氮量协同组合。  【方法】  于2018—2019年,在黑龙江省五常市龙凤山乡辉煌村进行田间试验。采用裂区试验方法,以‘五优稻4号’为供试品种。以密度为主区,设置15穴/m2 (D1)和24穴/m2 (D2);以施氮量为副区,设施氮(N)量为0、75、105、135 kg/hm2 4个水平,分别表示为N0、N75、N105、N135处理。在水稻成熟期,测定了植株地上部干物重、稻谷产量、精米产量、精米率、蛋白质含量、直链淀粉含量、食味值等指标;比较了稻谷产量与精米产量确定的施氮量差异。  【结果】  在D1、D2两个密度下,随着施氮量的增加,稻谷产量、地上部干物重、精米产量都呈先升高后降低的趋势,均在N105达到最大值。除D1密度下N105处理的稻谷产量与N135处理差异不显著外,其余均显著高于其他处理,而N135处理的稻谷产量与N75处理无显著差异,但2018年地上部干物重却显著高于N75处理。随着施氮量的提高,精米蛋白质含量呈现增加趋势,精米率和食味值却呈降低趋势。与N0相比,N135处理精米蛋白质含量平均提高了7.58%,精米率和食味值分别平均降低了8.81%和10.24%。N105处理的氮素回收率显著高于N75和N135处理,农学效率、氮肥生理利用率和偏生产力均显著高于N135处理。D2密度下精米蛋白质含量低于D1密度处理,而精米率和食味品质高于D1密度处理,D2密度下的稻谷产量、氮积累量和精米产量均高于D1密度处理,氮积累量和氮肥偏生产力比D1处理平均提高了40.35%和 40.31%,两个密度间氮肥回收率、农学效率和氮肥生理利用率无明显差异。农户直接出售优质米使经济效益提高了7428元/hm2,D2密度使经济效益额外增加了4229元/hm2。施氮量与稻谷产量、精米产量均呈二次曲线关系,依据施氮量与稻谷产量效应函数,确定经济最佳施氮量为96.4~123.7 kg/hm2;依据施氮量与精米产量效应函数,确定的适宜施氮量为76.2~105.9 kg/hm2。  【结论】  适度密植(24穴/m2)有利于稻谷产量、氮素吸收量的提高,而不影响食味值和精米率。在本试验水稻适宜密植条件下,基于施氮量和精米产量效应函数确定的适宜施氮量为76.2~105.9 kg/hm2,该施氮量的确定方法有利于协同实现稻米高产优质和氮肥减施增效。  相似文献   
9.
2018~2019年设置田间小区试验,以主栽高产型水稻品种松粳3号为试验材料,设0、75、105、135、165 kg·hm-2等5个供氮水平,调查水稻分蘖、干物质积累、氮积累、产量和氮效率等指标.施氮促进水稻分蘖发生,施氮和不施氮处理分蘖数差异显著,随施氮量增加,拔节、抽穗、成熟3个时期分蘖数增加量分别为49.54%~65.15%、62.36%~82.90%和63.13%~87.92%(P<0.05),施用氮肥分蘖成穗率增加12.99%~15.13%(P<0.05).施用氮肥显著增加水稻干物质积累和氮积累,施氮量相差60 kg·hm-2以上植株干物质及氮素积累量差异显著.水稻产量、单位面积颖花数随氮量增加而增加,结实率随氮量增加而降低.氮量和产量关系符合线性加平台模型,转折点施氮量为137~138 kg·hm-2,对应产量为9080~9166 kg·hm-2.随氮量增加氮肥吸收利用率无明显变化或显著增加,具有年际间差异.随氮肥用量增加,氮肥生理利用率、农学利用率(2019年除外)、偏生产力显著降低.施氮量在137.5 kg·hm-2以上虽未造成减产,但前期低温年(2019年)氮量由135 kg·hm-2增至165 kg·hm-2,造成氮肥农学效率显著降低.耐肥的高产水稻品种,施氮量增加不易造成减产,但氮效率降低,适量施氮对实现高产水稻品种高产和氮高效相统一尤为关键.  相似文献   
10.
为了强化龙葵修复高镉污染土壤的能力,研究化控措施对超积累植物龙葵修复镉污染土壤能力的影响。在 含量为100 mg/ kg 的镉污染土壤上,采用盆栽试验方法,通过浸种和叶面喷施相结合的处理方式,研究了质量浓度 为5、10、20、40 mg/ L 的二烷氨基乙醇羧酸酯(DA-6)对龙葵各器官吸收和富集镉状况的影响。结果表明:各组处理 均能够促进龙葵对镉的吸收和累积,其中20 mg/ L 时作用最显著,提高了苗期和成熟期的根、茎、叶和果实质量,同 时也增加了镉浓度,使得成熟期根、茎、叶的镉提取量增加了46.33%、28.93% 和41.28% (P 0.05);5 和10 mg/ L DA-6 也对茎部质量的增加和成熟期各器官镉提取量作用显著,而40 mg/ L DA-6 仅对叶部质量和镉提取量起到了 一定作用;因此DA鄄6 应用在提高龙葵修复效率的最适宜的浸种和叶面喷施的质量浓度应为20 mg/ L。   相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号