首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
农学   1篇
基础科学   10篇
  4篇
综合类   1篇
农作物   8篇
水产渔业   3篇
畜牧兽医   4篇
园艺   3篇
植物保护   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2013年   3篇
  2012年   3篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
排序方式: 共有37条查询结果,搜索用时 469 毫秒
1.
We investigated the magnitude and dynamics of the eddy covariance system (ECS) residual energy (energy balance closure error) for a subsurface drip-irrigated maize (Zea mays L.) field in 2005 and 2006 growing and non-growing (dormant) seasons. The corrections for coordinate rotation, oxygen, frequency, and Webb–Pearman–Leuning corrections improved the slope of the total convective energy (latent heat + sensible heat) with respect to the net available energy (from 0.68 to 0.84), but the data filtering (for horizontal and frictional wind speeds higher than 2 m s?1 and lower than 0.2 m s?1) had little effect on the slope. Also, the number of data points available for the analyses was reduced by 53 % after filtering. Overall, the daytime residual energy varied between ?100 and 200 W m?2 during the dormant seasons and between ?500 and 600 W m?2 during the growing seasons. Most of the nighttime residual energy ranged within ±40 W m?2 during the calendar year in 2005 and within ?60 and 20 W m?2 in 2006. During nighttime, the total convective energy is vertically distributed with respect to (R n ? G), indicating that the total convective energy is independent of the variations in (R n ? G). Secondly, it was observed that nighttime residual energy did not show any seasonal variation patterns throughout the two consecutive years and confined mostly within a narrow range of ±40 W m?2, showing no dependency on seasonal changes in surface conditions. The maximum variation in residual energy was usually around frictional wind speed of 0.3–0.5 m s?1 (varying between ?150 and 300 W m?2) and then decreasing to a range of ±100 W m?2 at higher frictional wind speeds. On average, the residual energy decreased by about 33 W m?2 (after the intercept) for every 1.0 m s?1 increase in frictional wind speed, whereas the residual energy decreased by about 4 W m?2 (after the intercept) for every 1.0 m s?1 increase in horizontal wind speed. Similar diurnal residual energy distribution patterns, with different magnitudes, were observed during growing and dormant seasons. Even though a slight decrease in residual energy was observed with increase in leaf area index (LAI) in both growing seasons, LAI did not have considerable influence on the seasonal variation in the residual energy. The residual energy was also evaluated by separating the data into morning and afternoon hours. We observed that the root-mean-squared difference value is slightly greater for the morning data than the afternoon, indicating greater residual energy in the morning hours due to weaker turbulent mixing than the afternoon. Overall, significant reduction in the available evapotranspiration data after applying a series of corrections possess challenges in terms of utilization of ECS for in-season irrigation management and crop water requirement determinations that needs to be further researched and addressed.  相似文献   
2.
Water consumed through evapotranspiration (ET) impacts local and regional hydrologic regimes on various spatial and temporal scales. Estimating ET in the Great Plains is a prerequisite for effective regional water resource management of the Ogallala (High Plains) Aquifer, which supplies vital water resources in the form of irrigation for extensive agricultural production. The Sand Hills region of Nebraska is one of the largest grass-stabilized eolian (windblown) sand dune formations in the world, with an area of roughly 50,000–60,000 km2 that supports a system of five major land cover types: (1) lakes, (2) wetlands (with lakes, ~5%), (3) subirrigated meadows (water table is within ~1 m of surface; ~10%), (4) dry valleys (water table is 1–10 m below surface; ~20%), and (5) upland dunes (water table is more than 10 m below surface; ~65%). Fully understanding the hydrologic regime of these different ecosystems is a fundamental challenge in regional water resource assessment. The surface energy and water balances were analyzed using Bowen Ratio Energy Balance Systems (BREBS) at three locations: (1) a meadow, (2) a valley, and (3) an upland dune. Measurement of the energy budget by BREBS, in concert with Landsat remote sensing image processing for 2004 reveals strong spatial gradients between sites in latent heat flux that are associated with undulating topographic relief. We find that daily estimates of ET from BREBS measurements and remote sensing agree well, with an uncertainty within 1 mm, which is encouraging when applying remote sensing results across such a broad spatial scale and undulating topography.  相似文献   
3.
Total phenolic acid and policosanol contents and compositions of bran from an Italian bread wheat variety Pegaso and its 11 near-isogenic lines were measured. The near-isogenic wheat lines differed at one or more loci coding for storage proteins. The genetic variation included deletions, additions and/or combinations of variations. Almost 95% or more of phenolic acids were in the bound form. Ferulic acid was the predominant bound phenolic acid present in wheat bran samples. Other phenolic acids were p-coumaric, vanillic and syringic acids. Tetracosanol, docosanol, hexacosanol, octacosanol, tricosanol and heneicosanol were found as major policosanol compounds in their decreasing order. Highly significant genotypic differences were observed in total phenolic acid and policosanol concentrations. None of the genetic lines had higher phenolic acid contents than the parent line Pegaso, whereas some of the lines had more policosanol levels. In general, both total phenolic acid composition and contents were higher with genetic lines that varied at Glu-1 loci with 2+Dy high molecular weight glutenin subunit (HMW-GS) (Pegaso 184), variation at Gli-D2 loci (Pegaso 219) and single null A1 (variation at Gli-1/Glu-3 loci; Pegaso 30). Highest total policosanol content was observed with the double null at Glu-A1/Glu-D1 loci (Pegaso 236). These findings may lead to new opportunities for wheat breeders and eventually commercial wheat growers to promote the production of wheat with enhanced levels of health beneficial compounds.  相似文献   
4.
Quantifying the local crop response to irrigation is important for establishing adequate irrigation management strategies. This study evaluated the effect of irrigation applied with subsurface drip irrigation on field corn (Zea mays L.) evapotranspiration (ETc), yield, water use efficiencies (WUE = yield/ETc, and IWUE = yield/irrigation), and dry matter production in the semiarid climate of west central Nebraska. Eight treatments were imposed with irrigation amounts ranging from 53 to 356 mm in 2005 and from 22 to 226 mm in 2006. A soil water balance approach (based on FAO-56) was used to estimate daily soil water and ETc. Treatments resulted in seasonal ETc of 580–663 mm and 466–656 mm in 2005 and 2006, respectively. Yields among treatments differed by as much as 22% in 2005 and 52% in 2006. In both seasons, irrigation significantly affected yields, which increased with irrigation up to a point where irrigation became excessive. Distinct relationships were obtained each season. Yields increased linearly with seasonal ETc (R2 = 0.89) and ETc/ETp (R2 = 0.87) (ETp = ETc with no water stress). The yield response factor (ky), which indicates the relative reduction in yield to relative reduction in ETc, averaged 1.58 over the two seasons. WUE increased non-linearly with seasonal ETc and with yield. WUE was more sensitive to irrigation during the drier 2006 season, compared with 2005. Both seasons, IWUE decreased sharply with irrigation. Irrigation significantly affected dry matter production and partitioning into the different plant components (grain, cob, and stover). On average, the grain accounted for the majority of the above-ground plant dry mass (≈59%), followed by the stover (≈33%) and the cob (≈8%). The dry mass of the plant and that of each plant component tended to increase with seasonal ETc. The good relationships obtained in the study between crop performance indicators and seasonal ETc demonstrate that accurate estimates of ETc on a daily and seasonal basis can be valuable for making tactical in-season irrigation management decisions and for strategic irrigation planning and management.  相似文献   
5.
The aim of this study is to determine the effects of iPPOV on pro-inflammatory and anti-inflammatory cytokine levels in rats. iPPOV (1 ml/rat) was administered intraperitoneal route to 49 rats, except for 7 rats (Control, 0 group). Serum samples were collected from 7 rats at 1st, 2nd, 4th, 8th, 12th, 16th and 24th hr after treatments. Levels of TNF-α, IL-6, IL-12 and IL-10 were determined using ELISA. Administration of iPPOV stimulated TNF-α (16th and 24th hr) and IL-6 (12th, 16th and 24th hr) synthesis and caused fluctuations in IL-10 and IL-12 concentrations. In conclusion, increased cytokine levels could be attributed to immunomodulatory activity of iPPOV, however, detailed studies are required to fully understand effects of iPPOV on immune system.  相似文献   
6.
Rice is the main crop produced in the Senegal River Valley under the semiarid Sahelian climate where water resource management is critical for the resource use sustainability. However, very limited data exit on rice water use and irrigation water requirement in this water scarcity environment under climate change conditions. Understanding crop water requirements is essential for better irrigation practices, scheduling and efficient use of water. The objectives of this study were to estimate crop water use and irrigation water requirement of rice in the Senegal River Valley at Fanaye. Field experiments were conducted during the 2013 hot and dry season and wet season, and 2014 hot and dry season and wet seasons. Three nitrogen fertilizer treatments were applied to rice variety Sahel 108: 60, 120, and 180 kg N ha?1. Rice water use was estimated by the two-step approach. Results indicated that crop actual evapotranspiration (ETa) varied from 632 to 929 mm with the highest ETa obtained during the hot and dry seasons. Irrigation water requirement varied from 863 to 1198 mm per season. Rice grain yield was function of the growing season and varied from 4.1 to 10.7 tons ha?1 and increased with nitrogen fertilizer rate. Rice water use efficiency relative to ETa and irrigation requirements increased with nitrogen fertilizer rate while rice nitrogen use efficiency decreased with the nitrogen fertilizer rates. The results of this study can be used as a guideline for rice water use and irrigation water requirement for the irrigation design projects, consultants, universities, producers, and other operators within rice value chain in the Senegal River Valley.  相似文献   
7.
The genetic relationships among 56 melon (Cucumis melo L.) genotypes collected from various parts of Turkey were determined by comparing their phenotypic and molecular traits with those of 23 local and foreign melon genotypes to investigate the taxonomic relationships and genetic variation of Turkish melon germplasm. Sixty-one phenotypic characters and 109 polymorphic RAPD markers obtained from 33 primers were used to define the genetic similarity among the melon genotypes by dendrograms or two and three dimensional scaling. There were high correlations (r ≥ 0.97) among the four resulting matrices used in molecular characterization. The correlations between phenotypic (Euclidean) and molecular Euclidean, Jaccard, Simple matching, and Nei analyses were r = 0.41, r = −0.40, r = −0.43 and r = −0.40, respectively. Related genotypes or genotypes collected from similar regions were partitioned to similar clusters. Both analyses (phenotypic and molecular) indicated that non-sweet melon types were dissimilar from sweet types and diversity of Turkish melon genotypes was higher than that of sweet foreign cultivars examined, but similar to that of the reference accessions employed. It was also observed that sweet Turkish melon genotypes belonging to groups inodorus and group cantalupensis were highly variable and could have intermated or have crossed with other non-sweet types.  相似文献   
8.
By using two tomato genotypes, 227/1 (Fe chlorosis susceptible) and Roza (Fe chlorosis tolerant), and their reciprocal F1, F2 and BC1 generations, the inheritance of tolerance to leaf Fe deficiency chlorosis of Roza was studied. Plants were grown in a nutrient solution and subjected to 2.0 × 10–6 M Fe EDDHA and 10 mM NaHCO3 to induce Fe deficiency stress by stabilization of pH to 7.8–8.2. A rating scale of 1–3 for chlorophyll was used and both monogenic and polygenic inheritance hypotheses were tested. Better responses to Fe deficiency, as measured by SPAD meter values, were obtained from the cross Roza × 227/1 than from the reciprocal cross. Data from F2 and BC1 suggest Fe chlorosis tolerance of Roza is to be controlled by polygenic loci with a relatively high additive effect.  相似文献   
9.
The genetic relationships among 63 melon (Cucumis melo L.) genotypes collected from various regions of Turkey were determined by comparing their molecular ISSR, SRAP, and RAPD markers with those of 19 foreign melon genotypes to investigate the taxonomic relationships and genetic variation of Turkish melon germplasm. Total 162 polymorphic markers (69, 18, and 75 obtained from ISSR, SRAP, and RAPD primers, respectively) were used to define the genetic similarity among the melon genotypes by dendrogram or two and three dimensional scalings. The average similarity (SM coefficient) between any two pairs of accessions examined as estimated by molecular variation was 0.73 ± 0.48. Within-group genetic similarities ranged between 0.46 and 0.96. Related genotypes or genotypes collected from similar regions were partitioned to similar clusters. Southeastern Anatolian genotypes were distinctly apart from group inodorus and group cantalupensis (sweet) genotypes. This reinforced the position of Turkey in the secondary genetic diversity center of melon. The genetic diversity among Turkish genotypes (H = 0.28 and I = 0.42) was only a little less than that of the world accessions (H = 0.30 and I = 0.45). On the other hand, the percentage of polymorphic loci among Turkish melon genotypes (90.7%) was even higher than that of the world accessions (87.6%).  相似文献   
10.
A surface energy balance model (SEB) was extended by Lagos et al. Irrig Sci 28:51–64 (2009) to estimate evapotranspiration (ET) from variable canopy cover and evaporation from residue-covered or bare soil systems. The model estimates latent, sensible, and soil heat fluxes and provides a method to partition evapotranspiration into soil/residue evaporation and plant transpiration. The objective of this work was to perform a sensitivity analysis of model parameters and evaluate the performance of the proposed model to estimate ET during the growing and non-growing season of maize (Zea Mays L.) and soybeans (Glycine max) in eastern Nebraska. Results were compared with measured data from three eddy covariance systems under irrigated and rain-fed conditions. Sensitivity analysis of model parameters showed that simulated ET was most sensitive to changes in surface canopy resistance, soil surface resistance, and residue surface resistance. Comparison between hourly estimated ET and measurements made in soybean and maize fields provided support for the validity of the surface energy balance model. For growing season’s estimates, Nash–Sutcliffe coefficients ranged from 0.81 to 0.92 and the root mean square error (RMSE) varied from 33.0 to 48.3 W m?2. After canopy closure (i.e., after leaf area index (LAI = 4) until harvest), Nash–Sutcliffe coefficients ranged from 0.86 to 0.95 and RMSE varied from 22.6 to 40.5 W m?2. Performance prior to canopy closure was less accurate. Overall, the evaluation of the SEB model during this study was satisfactory.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号