首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
基础科学   5篇
  1篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
排序方式: 共有6条查询结果,搜索用时 78 毫秒
1
1.
覆盖度对无人机热红外遥感反演玉米土壤含水率的影响   总被引:3,自引:0,他引:3  
为提高基于冠层温度信息反演土壤含水率的精度,以不同水分处理的拔节期大田玉米为研究对象,采用无人机热红外和可见光相机获取试验区遥感图像,通过不同图像分类方法剔除土壤背景,提取玉米植被覆盖度(Corn vegetation coverage,Vc)及冠层温度(Canopy temperature,Tc),并计算冠-气温差(Tca)和冠-气温差与覆盖度的比值,分析这两种指数与土壤含水率(Soil moisture content,Smc)之间的关系。结果表明,不同分类方法提取的玉米覆盖度以及冠层温度均存在差异,由灰度分割法、RGRI指数法、GBRI指数法3种分类方法剔除土壤背景后计算的冠-气温差、冠-气温差与覆盖度之比与土壤含水率均呈线性关系,并且冠-气温差、冠-气温差与覆盖度之比两种指数反演0~30 cm玉米根域深度的土壤含水率效果较好;其中,未剔除土壤背景的冠-气温差反演土壤含水率效果较差,GBRI指数分类法剔除土壤背景的冠-气温差反演土壤含水率效果有所提高(0~10 cm、10~20 cm、20~30 cm深度的R2由0. 255、0. 360、0. 131提高至0. 425、0. 538、0. 258);而冠-气温差与覆盖度的比值反演土壤含水率相比于冠-气温差精度明显提高,0~10 cm、10~20 cm、20~30 cm深度建模集R2高达0. 488、0. 600、0. 290,P 0. 001,验证集R2达0. 714、0. 773、0. 446,表明冠-气温差与覆盖度之比是反演玉米根域深度土壤含水率效果更优的指标。  相似文献   
2.
无人机多光谱遥感反演各生育期玉米根域土壤含水率   总被引:1,自引:3,他引:1  
为准确及时地获取植被覆盖条件下农田土壤水分信息,该文以不同水分处理的大田玉米为研究对象,利用无人机遥感平台对夏玉米进行多期遥感监测,并同步采集玉米根域不同深度土壤含水率(Soil Water Content,SWC)。基于2018年夏玉米拔节期、抽雄-吐丝期和乳熟-成熟期的无人机多光谱遥感影像数据集,通过支持向量机(Support Vector Machine,SVM)分类剔除土壤背景,提取玉米冠层光谱反射率并计算10种植被指数(VegetationIndex,VI),然后利用全子集筛选(FullSubsetSelection)法对不同波段和植被指数进行不同深度土壤含水率的敏感性分析,并分别采用岭回归(Ridge Regression,RR)和极限学习机(ExtremeLearningMachine,ELM)2种方法构建全子集筛选后0~20、20~45和45~60cm不同深度下的土壤含水率定量估算模型。结果表明:基于贝叶斯信息准则(BayesianInformationCriterion,BIC)的全子集筛选法可以有效筛选最优光谱子集,筛选变量基本都通过了显著性检验,自变量个数较少;在同一生育期、同一深度条件下,ELM模型效果均优于RR模型;玉米在拔节期、抽雄-吐丝期的最佳监测深度为0~20cm,在乳熟-成熟期的最佳监测深度为20~45cm;乳熟-成熟期的20~45cm深度下的ELM反演模型效果最优,其建模集和验证集的决定系数Rc2和Rv2分别为0.825和0.750,均方根误差RMSEc和RMSEv分别为1.00%和1.32%,标准均方根误差NRMSEc和NRMSEv分别为10.85%和13.55%。利用全子集筛选法与机器学习相结合的方法可以提高土壤含水率的反演精度和鲁棒性,本研究为快速、准确地监测农田土壤墒情、实施精准灌溉提供了一种新的途径。  相似文献   
3.
为剔除无人机多光谱图像中的土壤背景、提高作物根域土壤含水率反演精度,以不同水分处理的拔节期冬小麦为研究对象,利用无人机多光谱相机分别在09:00、11:00、13:00、15:00和17:00等5个时刻获取高分辨率多光谱图像,采用改进的植被指数阈值法快速确定植被像元与土壤像元的分类阈值,通过阈值划分剔除土壤背景,并根据阈值变化研究土壤背景对冬小麦冠层反射率的影响,建立了剔除土壤背景前后基于植被指数的土壤含水率反演模型。结果表明,应用改进的植被指数阈值法可有效剔除多光谱图像中的土壤背景,其中基于植被指数RDVI的剔除精度最高,总体精度在91.32%以上;土壤背景对冬小麦冠层近红外波段的反射率影响较大,红边波段次之,而对可见光波段的反射率影响较小;剔除土壤背景前后的植被指数与土壤含水率均呈线性关系,剔除土壤背景对反演土壤含水率的精度有显著提高,其中NGRDI反演深度10~20cm的冬小麦根域土壤含水率效果最好,建模集R2和RMSE分别为0.739和2.0%,验证集R2和RMSE分别为0.787和2.1%。  相似文献   
4.
基于无人机热红外遥感的玉米地土壤含水率诊断方法   总被引:2,自引:0,他引:2  
为使热红外遥感诊断土壤含水率更加准确、高效,以不同水分处理的大田玉米为研究对象,借助无人机可见光图像,对热红外图像进行植土分离,并提取玉米冠层温度和地表土壤温度。通过剔除温度直方图两端1%的温度像元对温度信息进行优化,进而计算作物水分胁迫指数(Crop water stress index,CWSI)、冠层相对温差(Canopy relative temperature difference,CRTD)、地表相对温差(Surface relative temperature difference,SRTD),利用三者之和求得水分-温度综合指数(Water-temperature composite index,WTCI),并用于诊断不同深度的土壤含水率。结果表明,剔除温度直方图两端1%温度像元的玉米冠层温度与实测冠层温度的相关性更高(4次试验的R2由0. 823、0. 886、0. 899、0. 876提高至0. 906、0. 938、0. 944、0. 922),剔除温度直方图前端1%温度像元的地表土壤温度与实测地表温度的相关性也更高(2次试验的R2由0. 841、0. 875提高至0. 908、0. 925),即通过直方图法优化的温度更接近实测温度;在拔节前期,CWSI、WTCI诊断0~20 cm土壤含水率效果较优,而拔节后期、抽雄吐丝期、乳熟期诊断0~40 cm土壤含水率效果较优;在半覆盖条件下,包含冠层温度信息(CWSI、CRTD)和土壤温度信息(SRTD)的WTCI1与土壤含水率的相关性更高(0~40 cm:决定系数为0. 500、0. 821,高于0. 463、0. 748);在全覆盖状态下,包含冠层相对温差(CRTD)的WTCI2与土壤含水率的相关性更高(0~40 cm:决定系数为0. 809、0. 729,高于0. 721、0. 656),表明WTCI是诊断土壤含水率效果较优的指标。  相似文献   
5.
基于无人机多光谱遥感的玉米根域土壤含水率研究   总被引:3,自引:0,他引:3  
及时获取农田作物根域土壤墒情是实现精准灌溉的基础和关键。以内蒙古自治区达拉特旗昭君镇试验站大田玉米为研究对象,利用无人机遥感系统,分别在玉米营养生长期(Vegetative stage,V期)、生殖期(Reproductive stage,R期)和成熟期(Maturation stage,M期)获得7次玉米冠层多光谱正射影像,并同步采集玉米根域不同深度土壤含水率(Soil moisture content,SMC);然后,采用灰色关联法对提取的多种植被指数(Vegetation index,VI)进行筛选,选取与土壤含水率敏感的植被指数;最后,分别采用多元混合线性回归(Cubist)、反向传播神经网络(Back propagation neural network,BPNN)和支持向量机回归(Support vector machine regression,SVR)等机器学习方法,构建不同生育期的敏感植被指数与土壤含水率的关系模型。结果表明,3种机器学习方法中SVR模型在各生育期的建模与预测精度均最优,BPNN模型次之,Cubist模型最差;其中SVR模型在M期效果最优,其建模集和验证集R~2分别为0. 851和0. 875,均方根误差(Root mean square error,RMSE)均为0. 7%,标准均方根误差(Normalized root mean square error,nRMSE)分别为8. 17%和8. 32%,R期效果最差,其建模集和验证集R~2分别为0. 619和0. 517。  相似文献   
6.
基于无人机热红外遥感的冬小麦水分胁迫研究   总被引:1,自引:0,他引:1  
为探究水分胁迫对冬小麦生长的影响,以不同水分处理的冬小麦为试验对象,利用无人机搭载热红外传感器,通过采集其不同生育期中一天不同时刻(11∶00,13∶00)的冠层热红外图像,提取其冠层温度信息,同时测定小麦叶片的气孔导度(Gs)、蒸腾速率(Tr)和田间土壤体积含水率(SWC)等信息。分别研究不同水分胁迫指数(CWSI、I_G、ICWSI)与各参数之间的关系,同时使用一元线性模型和多元线性回归模型进行建模并验证。结果表明:CWSI、I_G和ICWSI与Gs、Tr和SWC之间存在着显著的相关关系,在一元模型中,SWC对不同水分胁迫指数的预测效果更好,验证R~2均在0.800以上,相对分析误差均在2.0以上,在多元模型中,CWSI的预测效果最好,验证R~2为0.928,相对分析误差为3.041,同时多元模型的预测效果均优于一元模型。该研究可快速获取大量作物信息,为利用无人机热红外遥感探究冬小麦的水分胁迫状况提供了一条新途径。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号