首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
基础科学   3篇
  2023年   3篇
排序方式: 共有3条查询结果,搜索用时 625 毫秒
1
1.
为实现不同深度下作物根系的实时监测与图像采集,设计开发了作物根系生长监测微根管装置,图像采集后可以通过上位机软件进行实时显示与存储。装置由监测管与控制箱组成,监测管使用亚克力材料制作透明外壳,同时在管内通过丝杠和导杆架设滑动轨道,利用步进电机实现摄像头在导轨上的运动控制;控制箱以STM32单片机为核心控制板,并根据实际需求选取了相应外设模块。以番茄根系为研究对象进行持续98 d的图像采集,借助软件RhizoVision Explore对根系图像进行分析,试验结果表明,前70 d番茄根系整体生长速度较快,后28 d逐渐趋于稳定,在深度6~10 cm处分布较为密集,根长密度在深度10 cm处于第91天达到最大值(1.22 cm/cm3),分析结果与番茄根系生长规律一致,表明本根系生长监测微根管装置能在不影响根系持续生长的情况下完成对作物根系的长期在线监测,满足作物根系监测要求。  相似文献   
2.
为在保证识别性能前提下,对叶片病害检测模型进行有效轻量化,基于主干替换、模型剪枝以及知识蒸馏技术构建了一种模型轻量化方法,对以YOLO v5s为基础的叶片黄化曲叶病检测模型开展轻量化试验。首先,通过常见的性能优异的轻量级主干特征提取神经网络结构(Lightweight convolutional neural networks,LCNN)替换YOLO v5s主干对模型主体进行缩减;然后利用模型稀疏化训练和批归一化层(Batch normalization layer)的缩放因子分布状况,筛选并删减不重要的通道;最后,通过微调重新训练以及知识蒸馏,将模型精度调整到接近剪枝前的水平。试验结果表明,经轻量化处理的模型精确率、召回率和平均精度分别为91.3%、87.4%和92.7%,模型内存占用量为1.4 MB,台式机检测帧率81.0f/s,移动端检测帧率1.2f/s,相比原始YOLO v5s叶片病害检测模型,精确率、召回率和平均精度下降3.7、4.6、2.7个百分点,内存占用量仅为处理前的10%,台式机和移动端检测的帧率分别提升近27%和33%。本文所提出的方法在保持模型性能的前提下对模型有效轻量化,为移动端叶片病害检测部署提供了理论基础。  相似文献   
3.
作物病害的初期快速准确识别是减小作物经济损失的重要保障。针对实际生产环境中,作物叶片黄化曲叶病毒病(Yellow leaf curl virus,YLCV)患病初期无法应用传统图像处理算法通过颜色或纹理特征进行准确和快速识别,并且YOLO v5s通用模型在复杂环境下识别效果差和效率低的问题,本文提出一种集成改进的叶片病害检测识别方法。该方法通过对Plant Village公开数据集中单一患病叶片图像以及实际生产中手机拍摄获取的患病作物冠层图像两种来源制作数据集,并对图像中的患病叶片进行手动标注等操作,以实现在复杂地物背景和叶片遮挡等情况下正确识别目标,即在健康叶片、患病叶片、枯萎叶片、杂草和土壤中准确识别出所有的患病叶片。此外,用智能手机在生产现场拍摄图像,会存在手机分辨率、光线、拍摄角度等多种因素,会导致识别正确率降低等问题,需要对采集到的图像进行预处理和数据增强以提高模型识别率,通过对YOLO v5s原始模型骨干网络重复多次增加CA注意力机制模块(Coordinate attention),增强YOLO算法对关键信息的提取能力,利用加权双向特征金字塔网络(Bidirectional feature pyramid network,BiFPN),增强模型不同特征层的融合能力,从而提高模型的泛化能力,替换损失函数EIoU(Efficient IoU loss),进一步优化算法模型,实现多方法叠加优化后系统对目标识别性能的综合提升。在相同试验条件下,对比YOLO v5原模型、YOLO v8、Faster R-CNN、SSD等模型,本方法的精确率P、召回率R、平均识别准确率mAP0.5、mAP0.5:0.95分别达到97.40%、94.20%、97.20%、79.10%,本文所提出的算法在提高了精确率与平均精度的同时,保持了较高的运算速度,满足对作物黄化曲叶病毒病检测的准确性与时效性的要求,并为移动端智能识别作物叶片病害提供了理论基础。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号