首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
基础科学   4篇
  2020年   2篇
  2019年   2篇
排序方式: 共有4条查询结果,搜索用时 0 毫秒
1
1.
泵的叶轮扫掠蜗壳隔舌时产生的压力脉动是引起船用泵振动噪声的原因之一.为尽可能弱化这一影响,分别设计了叶片出口边与前后盖板基本面垂直和倾斜的2种不同形式叶轮,将其配置在相同的双蜗壳中,通过数值计算与样机试验相结合的手段,对蜗壳内9个不同位置的压力脉动情况进行对比分析.结果表明:出口边倾斜的叶轮相比于出口边垂直的叶轮可明显改善蜗壳内次脉动的“驼峰”现象,且可以进一步降低隔舌处主波动的压力峰值;对蜗壳内2个隔舌稍前的位置,出口边倾斜的叶轮反而会使得该点的压力系数幅值明显增大,且该点主波动的周期数发生改变;2种叶轮出口边的不同形式对蜗壳出口位置的压力脉动的影响基本相同;采用出口边倾斜叶轮对改善因叶轮与隔舌间的液流压力脉动是可行的.  相似文献   
2.
为了研究屏蔽泵冷却循环回路与泵内部温升关系,模拟计算了屏蔽电动机内部温度场与压力场的分布以及冷却循环回路中的温升,分析了冷却液与电动机定转子之间的对流换热信息.以冲压成型屏蔽泵实型样机为研究对象,利用工程仿真软件CFD,对屏蔽泵叶轮前后腔体、冷却循环回路等全流场进行热流耦合数值分析.结果表明:屏蔽套间隙内的温升在不同流量工况下温度变化较小,最大温差为0.97 ℃;额定流量工况下,轴孔径的大小对屏蔽电动机的温升影响较小.随着轴孔径的逐渐增大,电动机内的最大温度逐渐减小;在额定流量工况下,由屏蔽泵数值与理论计算两种情况的循环流量与轴孔径的关系可以得出:数值计算与理论计算两者的结果基本一致,研究结果为屏蔽泵冷却循环回路的设计提供理论依据.  相似文献   
3.
为研究转速、隔离套材料以及转角差对磁力联轴器涡流损失的影响规律,对圆筒型磁力联轴器进行稳态磁场数值计算.计算结果表明:涡流损失随转速的提高成倍增长,转速为3 000 r/min时的涡流损失值约为500 r/min时的24倍;材料电导率不同,所制成的隔离套涡流损失也不同,钛板TP340电导率为304SS的1.65倍,其涡流损失为后者的1.61倍;在1个磁极周期内,转角差增大1°,涡流损失值约增大1%.对该磁转子进行试验测试,结果表明:在转速分别为3 000,500 r/min条件下,304SS隔离套的涡流损失之比是23.0,而TP340隔离套的涡流损失之比为24.6;涡流损失随耦合长度减小而减小,且在高速下减小更多,耦合长度每减小10 mm,转速500 r/min时涡流损失值约下降3.6%,转速3 000 r/min时涡流损失值约下降10%.对比数值计算与试验结果,其能量损失变化趋势较一致.  相似文献   
4.
为满足炼油装置能够连续性生产的要求,对泵轴的密封性提出很高的要求,研究出用于输送高温热油的磁力泵技术.运用CFX软件对高温高压磁力泵进行全流场数值模拟,分析磁力泵流场的压力、速度、流线分布,比较磁力泵在高温热油介质和常温常压水2种介质下的外特性曲线,同时分析模型泵的轴向受力情况,验证设计的合理性.结果表明:设计的高温高压磁力泵适合在1.0Qd~1.6Qd的流量区间内工作,此时内部流线较为顺畅,叶片压力分布均匀,叶轮叶片未出现脱流现象,运行状况良好;介质的物理特性对磁力泵外特性性能曲线影响不大,磁力泵在高温热油和常温水2种介质下均可适用;内磁转子产生的轴向力相对于其他因素产生的轴向力较小,高温高压磁力泵产生的轴向力随流量的增大而减小,叶轮流道受到的合力随流量的增大而增大,叶轮各部分的静压力减小,总的轴向力减小;对磁力泵的水力结构及轴向力进行了校核,可为高温高压磁力泵设计提供参考.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号